4.8 Article

Flexible piezoelectric AlN transducers buckled through package-induced preloading for mechanical energy harvesting

Journal

NANO ENERGY
Volume 85, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2021.105986

Keywords

Mechanical energy harvesting; Piezoelectric transducers; Aluminum Nitride (AlN); Package-induced preloading; Compliant micro-mechanisms; Buckling

Ask authors/readers for more resources

The research focuses on novel flexible micro-devices for energy harvesting from low-frequency and random mechanical sources. Bi-stable and statically balanced thin-film piezoelectric transducers based on Aluminum Nitride (AlN) have been fabricated and characterized. The introduction of post-buckled flexure and Package-Induced Preloading (PIP) have demonstrated enhanced voltage output and promising applications for wind energy harvesting.
There is a high demand for novel flexible micro-devices for energy harvesting from low-frequency and random mechanical sources. The research of new functional designs is required to strategically enhance the performances and to increase the control on mechanical flexibility. In this work we report the fabrication and characterization of bi-stable and statically balanced thin-film piezoelectric transducers based on Aluminum Nitride (AlN). The device consists of a piezoelectric layer sandwiched between two thin Molybdenum electrodes that were deposited on a Kapton substrate by reactive sputtering and patterned by UV lithography. In order to improve the out-of-plane flexibility, the mechanical design is distinguished by a post-buckled flexure that introduces a negative stiffness to compensate the otherwise positive stiffness of the system. The buckling was introduced by a new method, called Package-Induced Preloading (PIP) where the mechanisms are laminated over a package with a geometry extending out-of-plane. The induced buckling resulted in bi-stable and statically balanced mechanisms which demonstrated an enhanced voltage output during a triggered snapping step. A preliminary study shows potential for the statically balanced designs and the PIP method for wind energy harvesting, revealing prospective applications and future improvements for the development of energy harvesters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available