4.6 Article

Direct Z-scheme WO3-x nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting

Journal

JOURNAL OF ENERGY CHEMISTRY
Volume 59, Issue -, Pages 721-729

Publisher

ELSEVIER
DOI: 10.1016/j.jechem.2020.12.010

Keywords

TiO2 nanorod arrays; WO3-x nanowire; Heterostructure; Photoelectrochemical; Hydrogen production

Funding

  1. National Key Research and Development Program of China [2019YFA0705400, 2019YFD0901100]
  2. National Natural Science Foundation of China [21991151, 21925404, 21775127]
  3. 111Project [B17027]
  4. Guangdong Basic and Applied Basic Research Foundation [2020A1515010510]

Ask authors/readers for more resources

A direct Z-scheme photoelectrocatalytic electrode based on a WO3-x nanowire-bridged TiO2 nanorod array heterojunction was constructed for overall water splitting and hydrogen evolution. The WO3-x/TiO2 heterojunction exhibited superior photoelectrochemical activity, achieving high rates of hydrogen and oxygen evolution without the need for sacrificial agents or redox mediators. The efficient charge transfer pathway between WO3-x nanowires and TiO2 nanorods, presence of oxygen vacancies in WO3-x, and applied bias potential on the photoelectrode all contributed to the superior overall water splitting performance.
All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H-2 is a promising strategy for efficient conversion of solar energy. However, most of these strategies require redox mediators. Herein, a direct Z-scheme photoelectrocatalytic electrode based on a WO3-x nanowire-bridged TiO2 nanorod array heterojunction is constructed for overall water splitting, producing H-2. The as-prepared WO3-x/TiO2 nanorod array heterojunction shows photoelectrochemical (PEC) overall water splitting activity evolving both H-2 and O-2 under UV-vis light irradiation. An optimum PEC activity was achieved over a 1.67-WO3-x/TiO2 photoelectrode yielding maximum H-2 and O-2 evolution rates roughly 11 times higher than that of pure TiO2 nanorods without any sacrificial agent or redox mediator. The role of oxygen vacancy in WO3-x in affecting the H-2 production rate was also comprehensively studied. The superior PEC activity of the WO3-x/TiO2 electrode for overall water splitting can be ascribed to an efficient Z-scheme charge transfer pathway between the WO3-x nanowires and TiO2 nanorods, the presence of oxygen vacancies in WO3-x, and a bias potential applied on the photoelectrode, resulting in effective spatial charge separation. This study provides a novel strategy for developing highly efficient PECs for overall water splitting. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Constructing the Vo-TiO2/Ag/TiO2 Heterojunction for Efficient Photoelectrochemical Nitrogen Reduction to Ammonia

Sheng Lin, Jun-Bo Ma, Jiang-Jian Fu, Lan Sun, Hua Zhang, Jun Cheng, Jian-Feng Li

Summary: Photoelectrochemical nitrogen fixation technology offers a mild approach to produce ammonia, but the effectiveness is limited by the strength of N2 bond and its ionic potential. In this study, a Vo-TiO2/Ag/TiO2 photoelectrode was designed and demonstrated to enhance the PEC reduction of N2 into ammonia. The combination of TiO2 nanorods, Ag nanoparticles, and Vo-TiO2 nanosheets facilitated the separation of photogenerated carriers and enabled the injection of electrons into the conduction band of Vo-TiO2. The catalyst achieved a high NH3 production rate of 51.2 μg h-1 cm-2 and exhibited excellent stability. The LSPR effect and heterojunction structure contributed to the improved PEC performance of TiO2 nanorod arrays.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Physical

Electron transition manipulation under graphene-mediated plasmonic engineering nanostructure

Huaizhou Jin, Jing-Yu Wang, Xia-Guang Zhang, Weiyi Lin, Weiwei Cai, Yue-Jiao Zhang, Zhi-Lin Yang, Fan-Li Zhang, Jian-Feng Li

Summary: The manipulation of excitons' transition from emitter to the graphene surface was achieved using plasmonic engineering nanostructures, resulting in large enhancements for photon emission on the graphene surface.

NANO RESEARCH (2023)

Article Biochemical Research Methods

In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial water on a single-crystal surface

Yao-Hui Wang, Shunning Li, Ru-Yu Zhou, Shisheng Zheng, Yue-Jiao Zhang, Jin-Chao Dong, Zhi-Lin Yang, Feng Pan, Zhong-Qun Tian, Jian-Feng Li

Summary: In this study, a protocol combining in situ Raman spectroscopy and ab initio molecular dynamics (AIMD) simulations is proposed to unravel the directional molecular features of interfacial water. The procedures for preparing single-crystal electrodes, constructing a Raman enhancement mode with shell-isolated nanoparticles, and eliminating perturbations during in situ electrochemical Raman experiments are presented. The combination of spectroscopic measurements and AIMD simulation results provides a roadmap for deciphering the potential-dependent molecular orientation of water at the interface.

NATURE PROTOCOLS (2023)

Article Chemistry, Physical

Electrolyte effect for carbon dioxide reduction reaction on copper electrode interface: A DFT prediction

Xia-Guang Zhang, Yu Zhao, Si Chen, Shu-Ming Xing, Jin-Chao Dong, Jian-Feng Li

Summary: In this study, theoretical calculations were used to investigate the reaction mechanism of CO2 reduction to CO with different electrolytes on the Cu(111) surface. It was found that the charge transfer is from the metal electrode to CO2, and the hydrogen bond interaction between the electrolytes and CO2 plays a crucial role in stabilizing the CO2 structure and reducing the formation energy of *COOH. Additionally, the characteristic vibration frequency of intermediates in different electrolyte solutions indicates that H2O is a component of HCO3-, promoting CO2 adsorption and reduction. These results provide essential insights into the role of electrolyte solutions in interface electrochemistry reactions and the catalysis process at the molecular level.

JOURNAL OF CHEMICAL PHYSICS (2023)

Article Multidisciplinary Sciences

Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts

Ye-Chuang Han, Jun Yi, Beibei Pang, Ning Wang, Xu-Cheng Li, Tao Yao, Kostya S. Novoselov, Zhong-Qun Tian

Summary: A novel graphene-confined ultrafast radiant heating (GCURH) method is developed to synthesize high-loading metal cluster catalysts in microseconds, overcoming the trade-off between ultrasmall size and high loading. The graphene acts as a diffusion-constrained nanoreactor, providing kinetics-dominant and diffusion-constrained conditions for the synthesis of subnanometer metal clusters.

NATIONAL SCIENCE REVIEW (2023)

Article Multidisciplinary Sciences

A van der Waals heterojunction strategy to fabricate layer-by-layer single-molecule switch

Yu-Ling Zou, Qing-Man Liang, Taige Lu, Yao-Guang Li, Shiqiang Zhao, Jian Gao, Zi-Xian Yang, Anni Feng, Jia Shi, Wenjing Hong, Zhong-Qun Tian, Yang Yang

Summary: Single-molecule electronics enable miniaturization of electronic devices, but current experiments are limited to traditional molecular structures. We developed layer-by-layer single-molecule heterojunctions using single-layer graphene electrodes, called single-molecule two-dimensional van der Waals heterojunctions (M-2D-vdWHs), which can be defined by the thickness of the molecule. By controlling the electric field, we demonstrated reversible switching behavior of the M-2D-vdWHs. These results show that stacked M-2D-vdWHs, composed of single-layer 2D materials and a single molecule, can respond to electric field stimulus, offering potential for unprecedentedly small single-molecule devices.

SCIENCE ADVANCES (2023)

Editorial Material Chemistry, Physical

Early-Career and Emerging Researchers in Physical Chemistry Volume 2

Anastassia N. Alexandrova, Julie S. Biteen, Sonia Coriani, Franz M. Geiger, Andrew A. Gewirth, Gillian R. Goward, Hua Guo, Libai Huang, Jian-Feng Li, Tim Liedl, Stephan Link, Zhi-Pan Liu, Sudipta Maiti, Andrew J. Orr-Ewing, David L. Osborn, Jim Pfaendtner, Benoit Roux, Friederike Schmid, J. R. Schmidt, William F. Schneider, Lyudmila V. Slipchenko, Gemma C. Solomon, Jeroen A. van Bokhoven, Veronique Van Speybroeck, Shen Ye, T. Daniel Crawford, Martin T. Zanni, Gregory V. Hartland, Joan-Emma Shea

JOURNAL OF PHYSICAL CHEMISTRY A (2023)

Editorial Material Chemistry, Physical

Early-Career and Emerging Researchers in Physical Chemistry Volume 2

Anastassia N. Alexandrova, Julie S. Biteen, Sonia Coriani, Franz M. Geiger, Andrew A. Gewirth, Gillian R. Goward, Hua Guo, Libai Huang, Jian-Feng Li, Tim Liedl, Stephan Link, Zhi-Pan Liu, Sudipta Maiti, Andrew J. Orr-Ewing, David L. Osborn, Jim Pfaendtner, Benoit Roux, Friederike Schmid, J. R. Schmidt, William F. Schneider, Lyudmila V. Slipchenko, Gemma C. Solomon, Jeroen A. van Bokhoven, Veronique Van Speybroeck, Shen Ye, T. Daniel Crawford, Martin T. Zanni, Gregory V. Hartland, Joan-Emma Shea

JOURNAL OF PHYSICAL CHEMISTRY B (2023)

Article Chemistry, Physical

Nanostructure-Based Plasmon-Enhanced Raman Spectroscopic Strategies for Characterization of the Solid-Electrolyte Interphase: Opportunities and Challenges

Yu Gu, Shuai Tang, Jun Yi, Si-Heng Luo, Chao-Yu Li, Guokun Liu, Jiawei Yan, Jian-Feng Li, Bing-Wei Mao, Zhong-Qun Tian

Summary: The physicochemical properties of the solid-electrolyte interphase (SEI) at anodes of lithium-based batteries are crucial. Nanostructure-based plasmon-enhanced Raman spectroscopy (PERS) techniques have offered significant opportunities for nondestructive and real-time studies of SEI. This Perspective highlights the recent progress in PERS and discusses its advantages and limitations for characterizing SEI and related interfacial processes.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Physical

Driving Reactant Molecules to Plasmonic Active Sites Using Electric Field for Enhanced Catalytic Reaction

Ruiyuan Zhang, Jingdan Zhang, Hongjun You, Muhammad Usman Amin, Jian-Feng Li, Jixiang Fang

Summary: Researchers developed a nano-driven and confined catalysis strategy using Au nano-bipyramids as catalysts for plasmon-enhanced catalytic reactions. By utilizing an electric field, reactant molecules were driven into hot spots and confined at catalytic active sites. This strategy resulted in significantly higher rate constants for catalytic reduction reactions compared to references.

ACS CATALYSIS (2023)

Article Chemistry, Physical

Metal-support interactions alter the active species on IrOx for electrocatalytic water oxidation

Ge-Yang Xu, Mu-Fei Yue, Zheng-Xin Qian, Zi-Yu Du, Xiao-Qun Xie, Wei-Ping Chen, Yue-Jiao Zhang, Jian-Feng Li

Summary: Constructing metal-support interaction (MSI) is an effective strategy to enhance the electrocatalytic performance of oxygen evolution reaction (OER). The study utilized in situ surface-enhanced Raman spectroscopy (SERS) to provide evidence of reactive intermediates and information on catalysts' structural evolution, revealing the pre-activation of Ir centers and the facilitated formation of superoxide species. Density functional theory (DFT) calculations further demonstrated that the MnO2 substrate optimizes binding energies of intermediates on IrOx, promoting O-O coupling and improving the OER rate.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Multidisciplinary Sciences

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Yue-Jiao Zhang, Huajie Ze, Ping-Ping Fang, Yi-Fan Huang, Andrzej Kudelski, Julia Fernandez-Vidal, Laurence J. Hardwick, Jacek Lipkowski, Zhong-Qun Tian, Jian-Feng Li

Summary: Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive technique for non-destructive detection at the single-molecule level. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) overcomes the limitations of traditional SERS substrates and morphology, expanding the applications of SERS. This Primer provides an introduction to the origin and enhancement mechanism of SHINERS, and describes the experimental details, including the types and characterization of shell-isolated nanoparticles, experimental instruments, reproducibility, and data analysis. It also highlights recent advances and discusses the limitations and potential optimizations of SHINERS.

NATURE REVIEWS METHODS PRIMERS (2023)

Article Chemistry, Multidisciplinary

Ultrabroadband hot-hole photodetector based on ultrathin gold film

Jun-Rong Zheng, En-Ming You, Yuan-Fei Hu, Jun Yi, Zhong-Qun Tian

Summary: Hot carriers injected into semiconductor enable below-bandgap photodetection, and the performance of hot carrier-based devices is related to the absorptivity of metal. Strategies such as surface plasmons, metamaterials, and optical cavities are used to enhance metal absorption, but narrow resonance bandwidth limits detection range. In this study, a purely planar hot-hole photodetector based on ultrathin gold film, an impedance-matched absorber, is designed. The device achieves high photoresponsivity and wide detection range, setting a new record for hot carrier photodetectors.

NANOSCALE (2023)

Article Chemistry, Analytical

Fast Detection of Trace Enrofloxacin and Ciprofloxacin in Chicken Meat by Surface-enhanced Raman Spectroscopy

Xu Jing, Zheng Hong, Xie Li-Fang, Lin Wei-Qi, Gao Jing, Xie Ze-Zhong, Chen Hong-Ju, Zeng Yong-Ming, Liu Guo-Kun, Tian Zhong-Qun

Summary: With the increasing public concern on food quality, the qualitative and quantitative analysis of trace banned substances in food is prospering in the field of food safety. A rapid and sensitive detection strategy for trace antibiotics in livestock was developed using surface-enhanced Raman spectroscopy. The proposed SERS-based strategy showed accurate qualification and reliable quantitation compared to standard HPLC-MS/MS technique, providing a practical method for rapid detection of other similar substances in real samples.

CHINESE JOURNAL OF ANALYTICAL CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Revealing the interfacial water structure on a p-nitrobenzoic acid specifically adsorbed Au(111) surface

Yuan Fang, Ren Hu, Jin-Yu Ye, Hang Qu, Zhi-You Zhou, Sai Duan, Zhong-Qun Tian, Xin Xu

Summary: The detailed structure of the water layer in the inner Helmholtz plane of a solid/aqueous solution interface is critical for understanding the electrochemical and catalytic performances of electrode materials. In this study, the interfacial water structure was investigated with the specific adsorption of p-nitrobenzoic acid on Au(111) surface. It was found that the protruding infrared band observed in the electrochemical infrared spectra is attributed to the surface-enhanced stretching mode of water molecules hydrogen-bonded to the adsorbed p-nitrobenzoate ions. The structure of the water layer is determined by both hydrogen-bonding interactions and coverages of specifically adsorbed p-nitrobenzoate.

CHEMICAL SCIENCE (2023)

Article Chemistry, Applied

In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries

Maoyi Yi, Jie Li, Mengran Wang, Xinming Fan, Bo Hong, Zhian Zhang, Aonan Wang, Yanqing Lai

Summary: In this study, polyacrylic acid (PAA) was used as a binder for the cathode in all-solid-state batteries. Through H+/Li+ exchange reaction, a uniform PAA-Li coating layer was formed on the cathode surface, improving the stability of the cathodic interface and the crystal structure. The SC-NCM83-PAA cathode exhibited superior cycling performance compared to traditional PVDF binder.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting

Yonghan Zhou, Zhongfeng Ji, Wenrui Cai, Xuewei He, Ruiying Bao, Xuewei Fu, Wei Yang, Yu Wang

Summary: By learning from the pencil-writing process, a solid-ink rubbing technology (SIR-tech) has been invented to develop durable metallic coatings on diverse substrates. The composite metallic skin by SIR-tech outperforms pure liquid-metal coating and shows great potential for various applications.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Coupling Sb2WO6 microflowers and conductive polypyrrole for efficient potassium storage by enhanced conductivity and K plus diffusivity

Ruiqi Tian, Hehe Zhang, Zeyu Yuan, Yuehua Man, Jianlu Sun, Jianchun Bao, Ming-Sheng Wang, Xiaosi Zhou

Summary: In this study, polypyrrole-encapsulated Sb2WO6 microflowers were synthesized and demonstrated to exhibit excellent potassium storage properties and cycling stability. The improved performance of Sb2WO6@PPy was attributed to the unique microflower structure, enhanced electronic conductivity, and protective PPy coating.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Physics-based battery SOC estimation methods: Recent advances and future perspectives

Longxing Wu, Zhiqiang Lyu, Zebo Huang, Chao Zhang, Changyin Wei

Summary: This paper presents a comprehensive survey on physics-based state of charge (SOC) algorithms applied in advanced battery management system (BMS). It discusses the research progresses of physical SOC estimation methods for lithium-ion batteries and presents future perspectives for this field.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine

Honggang Huang, Yao Chen, Hui Fu, Cun Chen, Hanjun Li, Zhe Zhang, Feili Lai, Shuxing Bai, Nan Zhang, Tianxi Liu

Summary: The d-d orbital coupling induced by crystal-phase engineering effectively adjusts the electronic structure of electrocatalysts, improving their activity and stability, which is significant for electrocatalyst research.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells

Quanzhen Sun, Yifan Li, Caixia Zhang, Shunli Du, Weihao Xie, Jionghua Wu, Qiao Zheng, Hui Deng, Shuying Cheng

Summary: In this study, indium (In) ions were introduced into flexible Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells to modify the back interface and passivate deep level defects in CZTSSe bulk. The results showed that In doping effectively inhibited the formation of secondary phase and V-Sn defects, decreased the barrier height at the back interface, passivated deep level defects in CZTSSe bulk, increased carrier concentration, and significantly reduced the V-OC deficit. Eventually, a flexible CZTSSe solar cell with a power conversion efficiency of 10.01% was achieved. This synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new approach for fabricating efficient flexible kesterite-based solar cells.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Toward a comprehensive hypothesis of oxygen-evolution reaction in the presence of iron and gold

Negah Hashemi, Jafar Hussain Shah, Cejun Hu, Subhajit Nandy, Pavlo Aleshkevych, Sumbal Farid, Keun Hwa Chae, Wei Xie, Taifeng Liu, Junhu Wang, Mohammad Mahdi Najafpour

Summary: This study investigates the effects of Fe on the oxygen-evolution reaction (OER) in the presence of Au. The study identifies two distinct areas of OER associated with Fe and Au sites at different overpotentials. Various factors were varied to observe the behaviors of FeOxHy/Au during OER. The study reveals strong electronic interaction between Fe and Au, and proposes a lattice OER mechanism based on FeOxHy.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst

Yingshi Su, Yonghui Cheng, Zhen Li, Yanjia Cui, Caili Yang, Ziyi Zhong, Yibing Song, Gongwei Wang, Lin Zhuang

Summary: This study systematically investigates the key roles of Nafion on Cu nanoparticles electrocatalyst for CO2RR. The Nafion modifier suppresses the hydrogen evolution reaction, increases CO2 concentration and mass transfer process, and activates CO2 molecule to enhance C2 product generation. As a result, the selectivity of the hydrogen evolution reaction is reduced and the efficiency of C2 products is significantly improved.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries

Daijie Deng, Honghui Zhang, Jianchun Wu, Xing Tang, Min Ling, Sihua Dong, Li Xu, Henan Li, Huaming Li

Summary: By doping sulfur into vanadium nitride, the S-VN/Co/NS-MC catalyst exhibits enhanced oxygen reduction reaction activity and catalytic performance. When applied in liquid and flexible ZABs, it shows higher power density, specific capacity, and cycling stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Self-assembly of perovskite nanocrystals: From driving forces to applications

Yi Li, Fei Zhang

Summary: Self-assembly of metal halide perovskite nanocrystals holds significant application value in the fields of display, detector, and solar cell due to their unique collective properties. This review covers the driving forces, commonly used methods, and different self-assembly structures of perovskite nanocrystals. Additionally, it summarizes the collective optoelectronic properties and application areas of perovskite superlattice structures, and presents an outlook on potential issues and future challenges in the development of perovskite nanocrystals.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Ag-integrated mixed metallic Co-Fe-Ni-Mn hydroxide composite as advanced electrode for high-performance hybrid supercapacitors

Anki Reddy Mule, Bhimanaboina Ramulu, Shaik Junied Arbaz, Anand Kurakula, Jae Su Yu

Summary: Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices. In this regard, silver (Ag) has attracted great attention in the design of efficient electrodes. The construction of multifaceted heterostructure cobalt-iron hydroxide (CFOH) nanowires (NWs)@nickel cobalt manganese hydroxides and/or hydrate (NCMOH) nanosheets (NSs) on the Ag-deposited nickel foam and carbon cloth (i.e., Ag/ NF and Ag/CC) substrates is reported. The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9 μA h cm-2 at 5 mA cm-2. Moreover, as-assembled hybrid cell based on NF (HC/NF) device exhibited remarkable areal capacity value of 1.82 mA h cm-2 at 5 mA cm-2 with excellent rate capability of 74.77% even at 70 mA cm-2. Furthermore, HC/NF device achieved maximum energy and power densities of 1.39 mW h cm-2 and 42.35 mW cm-2, respectively. To verify practical applicability, both devices were also tested to serve as a self-charging station for various portable electronic devices.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Insights into ionic association boosting water oxidation activity and dynamic stability

Zanling Huang, Shuqi Zhu, Yuan Duan, Chaoran Pi, Xuming Zhang, Abebe Reda Woldu, Jing-Xin Jian, Paul K. Chu, Qing-Xiao Tong, Liangsheng Hu, Xiangdong Yao

Summary: In this study, it was found that Ni sites act as a host to attract Fe(III) to form Fe(Ni)(III) binary centers, which promote the oxygen evolution reaction (OER) activity and stability by cyclical formation of intermediates. Additionally, other ions can also catalyze the OER process on different electrodes.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Reversible Mn2+/Mn4+double-electron redox in P3-type layer-structured sodium-ion cathode

Jie Zeng, Jian Bao, Ya Zhang, Xun-Lu Li, Cui Ma, Rui-Jie Luo, Chong-Yu Du, Xuan Xu, Zhe Mei, Zhe Qian, Yong-Ning Zhou

Summary: The balance between cationic redox and oxygen redox is crucial for achieving high energy density and cycle stability in sodium batteries. This study demonstrates the reversible Mn2+/Mn4+ redox in a P3-Na0.65Li0.2Co0.05Mn0.75O2 cathode material through Co substitution, effectively suppressing the contribution of oxygen redox and improving structure stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices

Daniela M. Josepetti, Bianca P. Sousa, Simone A. J. Rodrigues, Renato G. Freitas, Gustavo Doubek

Summary: Lithium-oxygen batteries have high energy density potential but face challenges in achieving high cyclability. This study used operando Raman experiments and electrochemical impedance spectroscopy to evaluate the initial discharge processes in porous carbon electrodes. The results indicate that the reaction occurs at the Li2O2 surface and the growth of Li2O2 forms a more compact and homogeneous structure.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Porous metal oxides in the role of electrochemical CO2 reduction reaction

Ziqi Zhang, Jinyun Xu, Yu Zhang, Liping Zhao, Ming Li, Guoqiang Zhong, Di Zhao, Minjing Li, Xudong Hu, Wenju Zhu, Chunming Zheng, Xiaohong Sun

Summary: This paper explores the challenge of increasing global CO2 emissions and highlights the role of porous metal oxide materials in electrocatalytic reduction of CO2 (CO2RR). Porous metal oxides offer high surface area and tunability for optimizing CO2RR reaction mechanisms.

JOURNAL OF ENERGY CHEMISTRY (2024)