4.2 Article

Role of Aminoglycoside-Modifying Enzymes (AMEs) in Resistance to Aminoglycosides among Clinical Isolates of Pseudomonas aeruginosa in the North of Iran

Journal

BIOMED RESEARCH INTERNATIONAL
Volume 2021, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2021/7077344

Keywords

-

Funding

  1. Molecular and Cell Biology Research Center in Mazandaran University of Medical Sciences, Sari, Iran [1293, IR.MAZUMS.REC.1398.980]

Ask authors/readers for more resources

In recent years, there has been an increasing prevalence of resistance to aminoglycosides among clinical isolates of Pseudomonas aeruginosa. A study investigated the role of aminoglycoside-modifying enzymes (AMEs) in this resistance and found high rates of resistance to various aminoglycosides. The study also identified the presence of AME-encoding genes in a significant portion of the resistant isolates, highlighting the importance of controlling the use of aminoglycosides in hospitals to prevent the spread of resistance.
In recent years, the prevalence of resistance to aminoglycosides among clinical isolates of Pseudomonas aeruginosa is increasing. The aim of this study was to investigate the role of aminoglycoside-modifying enzymes (AMEs) in resistance to aminoglycosides in clinical isolates of P. aeruginosa. The clinical isolates were collected from different hospitals. Disk agar diffusion test was used to determine the antimicrobial resistance pattern of the clinical isolates, and the minimum inhibitory concentration of aminoglycosides was detected by microbroth dilution method. The PCR was performed for discovery of aminoglycoside-modifying enzyme-encoding genes. Among 100 screened isolates, 43 (43%) isolates were resistant to at least one tested aminoglycosides. However, 13 (13%) isolates were resistant to all tested aminoglycosides and 37 isolates were detected as multidrug resistant (MDR). The resistance rates of P. aeruginosa isolates against tested antibiotics were as follows: ciprofloxacin (41%), piperacillin-tazobactam (12%), cefepime (32%), piperacillin (26%), and imipenem (31%). However, according to the MIC method, 13%, 32%, 33%, and 37% of the isolates were resistant to amikacin, gentamicin, tobramycin, and netilmicin, respectively. The PCR results showed that AAC(6')-Ib was the most commonly (26/43, 60.4%) identified AME-encoding gene followed by AAC(6')-IIa (41.86%), APH(3')-IIb (34.8%), ANT(3 '')-Ia (18.6), ANT(2 '')-Ia (13.95%), and APH(3 '')-Ib (2.32%). However, APH(3')-Ib was not found in any of the studied isolates. The high prevalence of AME-encoding genes among aminoglycoside-resistant P. aeruginosa isolates in this area indicated the important role of AMEs in resistance to these antibiotics similar to most studies worldwide. Due to the transmission possibility of these genes between the Gram-negative bacteria, we need to control the prescription of aminoglycosides in hospitals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available