4.1 Article

Characterization and evolution of the mitochondrial DNA control region in Ranidae and their phylogenetic relationship

Journal

GENETICS AND MOLECULAR RESEARCH
Volume 15, Issue 3, Pages -

Publisher

FUNPEC-EDITORA
DOI: 10.4238/gmr.15038491

Keywords

Mitochondrial DNA; Control region; Ranidae; Phylogeny; Mitochondrial DNA structure

Funding

  1. National Natural Science Foundation of China [31260088, 31560590]
  2. Jiangxi Province Talent Project 555
  3. Jiangxi Province Major Disciplines Academic Leaders [20133BCB22010]
  4. Natural Science Foundation of Jiangxi Province [20132BAB204022, 20152ACB21006]
  5. Science and Technology Foundation of Jiangxi Provincial Department of Education [GJJ150768]

Ask authors/readers for more resources

The control region is considered to be one of the most variable parts of animal mitochondrial DNA (mtDNA). We compared the mtDNA control region from 37 species representing 14 genera and 4 subfamilies of Ranidae, to analyze the evolution of the control region and to determine their phylogenetic relationship. All the Ranidae species had a single control region, except four species that had two repeat regions. The control region spanned the region between the Cyt b and tRNA(leu) genes in most of the Ranidae species. The length of the control region sequences ranged from 1186 bp (Limnonectes bannaensis) to 6746 bp (Rana kunyuensis). The average genetic distances among the species varied from 1.94% (between R. chosenica and R. plancyi) to 113.25% (between Amolops ricketti and Euphlyctis hexadactylus). The alignment of three conserved sequence blocks was identified. However, conserved sequence boxes F to A were not found in Ranidae. A maximum likelihood method was used to reconstruct the phylogenetic relationship based on a general time reversible + gamma distribution model. The amount of A+T was higher than G+C across the whole control region. The phylogenetic tree grouped members of the respective subfamilies into separate clades, with the exception of Raninae. Our analysis supported that some genera, including Rana and Amolops, may be polyphyletic. Control region sequence is an effective molecular mark for Ranidae phylogenetic inference.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available