4.6 Article

Mitogenomics of Hesperelaea, an extinct genus of Oleaceae

Journal

GENE
Volume 594, Issue 2, Pages 197-202

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2016.09.007

Keywords

De novo assembly; Herbarium specimen; Hesperelaea palmeri; Lamiales; Mitochondrial DNA; Olive; Phylogeny

Funding

  1. Regional Council Midi-Pyrenees [AAP 13053637, 2014-EDB-UT3-DOCT]
  2. LABEX TULIP [ANR-10-LABX-0041]

Ask authors/readers for more resources

The recent developments in high-throughput DNA sequencing allowed major advances in organelle genomics. Assembly of mitochondrial genomes (hereafter mitogenomes) in higher plants however remains a challenge due to their large size and the presence of plastid-derived regions and repetitive sequences. In this study, we reconstructed the first mitogenome of Oleaceae using a herbarium specimen of the extinct genus Hesperelaea collected in 1875. Paired-end reads produced with the HiSeq technology (shotgun) in a previous study were reused. With an approach combining reference-guided and de novo assembly, we obtained a circular molecule of 658,522 bp with a mean coverage depth of 35 x. We found one large repeat (ca. 8 kb) and annotated 46 protein-coding genes, 3 rRNA genes and 19 tRNA genes. A phylogeny of Lamiales mitogenomes confirms Oleaceae as sister to a group comprising Lamiaceae, Phyrmaceae and Gesneriaceae. The Hesperelaea mitogenome has lower rates of synonymous and non-synonymous substitution compared to Nicotiana tabacum than other available mitogenomes of Lamiales. To conclude, we show that mitogenome reconstruction in higher plants is possible with shotgun data, even from poorly preserved DNA extracted from old specimens. This approach offers new perspectives to reconstruct plant phylogenies from mitochondrial markers, and to develop functional mitogenomics in Oleaceae. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available