4.8 Article

Complete CO Oxidation by O2 and H2O over Pt-CeO2-δ/MgO Following Langmuir-Hinshelwood and Mars-van Krevelen Mechanisms, Respectively

Journal

ACS CATALYSIS
Volume 11, Issue 19, Pages 11820-11830

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.1c02507

Keywords

CO oxidation; H2O effect; kinetics; active site; reaction mechanism

Funding

  1. 111 Project of China [B18030]
  2. Fundamental Research Funds for the Central Universities, Nankai University [63201071, ZB19500202]
  3. open foundation of Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education
  4. Dalian University of Technology [KLIEEE-19-07]
  5. Natural Science Foundation of Tianjin [19JCYBJC20500]
  6. Beijing-Tianjin-Hebei Collaborative Innovation Project [19YFSL-QY00030]

Ask authors/readers for more resources

Research indicates the possible difference in CO oxidation reaction mechanism, a catalyst with a combination of platinum atoms and nanoparticles was designed, showing that CO oxidation and water-gas shift (WGS) reactions follow different reaction mechanisms.
CO oxidation has attracted great attention in the automobile exhaust treatment and fuel cell industrial process, with Pt as one of the most promising catalysts. The efficiency of the catalyst is still below the requirement of the industry due to limited understanding about the reaction mechanism of CO oxidation by O-2 or H2O, which were proposed to be following the similar/same reaction mechanism (the Mars-van Krevelen reaction mechanism). Our recent results indicate that this assumption might not be correct. Here, we design a catalyst with a combination of isolated platinum atoms (Pt-1) and nanoparticles (Pt-n) supported on MgO-dispersed CeO2-delta (CeO2-delta/MgO), named as 0.5Pt-xCeO(2-delta)/MgO (x = 0, 1, 2, 5, 10, 20) to establish two types of active sites, one is solely over Pt NPs (type-I) and the other is at the interface between Pt atoms and the reducible metal oxide support CeO2-delta (type-II), and we perform kinetic, thermodynamic, and in situ spectroscopy analysis on this catalyst to prove that CO oxidation by O-2 undergoes the Langmuir-Hinshelwood reaction mechanism on type-I sites (Pt NPs), while water-gas shift (WGS) reaction undergoes the Marsvan Krevelen reaction mechanism at the interface between Pt atoms and the reducible support CeO2-delta (type-II) verified by activation energy assessment and the reactant and product pressure dependency studies applied, in which a systematic reduction of the reaction barrier of CO oxidation (by O-2) was obtained once the size of Pt NPs increased and was independent of the changes in the size of CeO2-delta, while the reaction barrier of the WGS was very sensitive to the size of CeO2-delta and slightly inert against the size of Pt NPs. Additionally, there is competitive adsorption between CO and O-2 over Pt-CeO2-delta/MgO, while there is no competitive adsorption between CO and H2O based on our pressure dependency studies. Collectively, our current work provides convincing evidence that the promotion of H2O on CO oxidation is the change of the reaction mechanism rather than the simple effect of hydroxyl dissociated by H2O dosing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available