4.4 Article

circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis

Journal

ONCOLOGY LETTERS
Volume 22, Issue 5, Pages -

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ol.2021.13056

Keywords

cervical cancer; circular RNA acetyl-CoA carboxylase alpha; glycolysis; apoptosis; endoplasmic reticulum disulphide oxidase 1 alpha

Categories

Ask authors/readers for more resources

Circular RNA circ-ACACA plays a crucial role in the progression of cervical cancer, promoting tumorigenesis and glycolysis by targeting the miR-582-5p/ERO1A signaling axis. circ-ACACA may serve as a promising biomarker for the diagnosis and treatment of cervical cancer.
Circular RNAs (circ) have been reported to serve crucial roles in the regulation of cancer occurrence and development. The present study aimed to investigate the role of circ-acetyl-CoA carboxylase alpha (ACACA) in the progression of cervical cancer (CC). The expression levels of circ-ACACA in several CC cell lines were first determined using reverse transcription-quantitative PCR. circ-ACACA expression was subsequently knocked down to evaluate its effects on the viability, proliferation, apoptosis, invasion and migration of CC cells using MTT, colony formation, TUNEL, transwell and wound healing assays, respectively. C-13-labeling of intracellular metabolites and analysis of glucose consumption and lactate production were performed to determine the levels of glycolysis. In addition, the expression levels of endoplasmic reticulum oxidoreductase 1 alpha (ERO1 alpha; ERO1A) and glycolysis-related proteins were analyzed using western blotting. The binding interactions among circ-ACACA, microRNA (miR)-582-5p and ERO1A were validated using dual-luciferase reporter assays. Subsequently, rescue experiments were performed to determine the potential underlying mechanism by which circ-ACACA affected CC cell functions. The results revealed that circ-ACACA expression was significantly upregulated in CC cells and silencing of circ-ACACA significantly reduced the proliferation, invasion and migration, and promoted the apoptosis of CC cells. Knockdown of circ-ACACA markedly inhibited glycolysis in CC cells. However, the effects of silencing of circ-ACACA on CC cells were reversed following transfection with the miR-582-5p inhibitor or pcDNA3.1-ERO1A overexpression plasmid. In conclusion, to the best of our knowledge, the present study was the first to investigate the role of circ-ACACA in CC progression. The results suggested that circ-ACACA may promote CC tumorigenesis and glycolysis by targeting the miR-582-5p/ERO1A signaling axis. Therefore, circ-ACACA may be a promising biomarker for CC diagnosis and treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available