4.7 Article

Experimental and numerical study of double-skin aluminium foam sandwich panels in bending

Journal

THIN-WALLED STRUCTURES
Volume 164, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2021.107894

Keywords

Aluminium foam; Innovative deck; Dry construction; Metallic sandwich panel; Experimental tests; FE simulations

Ask authors/readers for more resources

Metal foams are engineered materials with attractive mechanical properties, mainly used in aeronautic and mechanical engineering. The study assessed the performance of double-skin composite sandwich panels made of steel sheets and aluminium foam for civil engineering applications, showing the effectiveness of the proposed type of sandwich panel and providing simple design equations for predicting stiffness and strength.
Metal foams are engineered materials with attractive mechanical properties such as lightness, energy dissipation capacity, high resistance and stiffness. To date, the applications of these materials are mainly limited to aeronautic and mechanical engineering. However, their features can provide significant advantages also for the development of new products for structures and infrastructures in the field of civil engineering. This consideration has motivated the study described in this paper, which is mainly devoted to assessing the performance of double-skin composite sandwich panels made of steel sheets and aluminium foam to be used as the deck in civil structures. To this aim, as the first step of ongoing research activity, both experimental and finite element (FE) simulations are carried out verifying the applicability of the proposed type of sandwich panel. Both tests on material specimens and three-point bending tests on the double-skin composite sandwich panels are performed, and the main results are discussed. FE analyses are carried out enlarging the range of investigated and monitored parameters assessing their influence on the bending and shear response of the panels. The outcomes of the study show the effectiveness of the proposed type of sandwich panel and allow selecting the most effective type of adhesive to bond the steel plates to the aluminium foam core. The obtained results are complemented with simple design equations that allow satisfactorily predicting both stiffness and strength of the sandwich panels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available