4.6 Article

Foam Flow in Different Pore Systems-Part 2: The Roles of Pore Attributes on the Limiting Capillary Pressure, Trapping Coefficient, and Relative Permeability of Foamed Gas

Journal

SPE JOURNAL
Volume 26, Issue 6, Pages 3926-3948

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/205523-PA

Keywords

-

Ask authors/readers for more resources

The study measured foam properties P-c* and FTC at core scale using novel techniques and investigated their scalability with permeability and other pore characteristics. Results showed strong negative correlations between P-c* and all pore characteristics except AR, and positive correlations between FTC and all pore characteristics except AR. Low aspect ratio (AR) was found to be responsible for significant trapping of foam in high-permeability rocks.
The limiting capillary pressure of foam (P-c*) and foam trapping in porous media are pore-scale foam properties that affect foam transport in porous media. They are strongly influenced by the characteristics of rock pores and throats. Because of experimental limitations, these foam properties are difficult to measure at core scale. As a result, our understanding of their relationship with different pore characteristics is limited. In this paper, novel coreflood and graphical analysis techniques were used to measure P-c* and the foam-trapping coefficient (FTC) at core scale. FTC is a new parameter synonymous to Land's (1968) trapping coefficient, which describes foam-trapping behavior across an entire range of saturation as opposed to a single endpoint trapped saturation. The scalability of these two foam properties with permeability and other pore characteristics [average pore size (PS), average throat size (TS), average aspect ratio (AR), coordination number (CN), surface area/volume ratio, and reservoir-quality index (RQI)] were also investigated. Pore characteristics of 12 different rock samples were measured from 3D pore-network models generated from high-resolution X-ray computed-microtomography images. The heterogeneity of the rock samples were quantified by the Dykstra-Parsons index (Dysktra and Parsons 1950), while the RQI and J-function methods were used to classify them according to their storage and flow properties. Each of the measured pore characteristics and their combination [combined pore character (CPC)] were then correlated with P; and FTC to understand their respective roles. Furthermore, the data points obtained from the graphical analysis of the coreflood data provided the required input data for a mechanistic foam model for relative permeability of foamed gas (Kovscek and Radke 1994). The estimated relative permeability of foamed gas was then used to study foam mobility in the different pore geometries. The overall results showed the following: P-c* has strong negative correlations with all pore characteristics except AR, which has a weak positive correlation. P-c* has the strongest correlation with RQI, CPC, and permeability; a moderate correlation with CN and TS; and a very weak correlation with PS. Foam trapping has positive correlations with all pore characteristics except AR, which has a negative correlation. Low AR appears to be responsible for significant trapping of foam in high-permeability rocks. Low AR favors more foam trapping, while high AR favors trapping of oil and gas during water imbibition in water-wet rocks. Foam trapping appears to have the dominant control on foam mobility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available