4.8 Article

Wafer-scale heterostructured piezoelectric bio-organic thin films

Journal

SCIENCE
Volume 373, Issue 6552, Pages 337-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.abf2155

Keywords

-

Funding

  1. National Institutes of Health [P30CA014520]

Ask authors/readers for more resources

The research introduces a novel approach for the large-scale fabrication of piezoelectric biomaterial thin films with excellent piezoelectric properties and mechanical flexibility. The glycine-PVA films, with their natural compatibility and degradability in physiological environments, have the potential to advance the development of transient implantable electromechanical devices.
Piezoelectric biomaterials are intrinsically suitable for coupling mechanical and electrical energy in biological systems to achieve in vivo real-time sensing, actuation, and electricity generation. However, the inability to synthesize and align the piezoelectric phase at a large scale remains a roadblock toward practical applications. We present a wafer-scale approach to creating piezoelectric biomaterial thin films based on g-glycine crystals. The thin film has a sandwich structure, where a crystalline glycine layer self-assembles and automatically aligns between two polyvinyl alcohol (PVA) thin films. The heterostructured glycine-PVA films exhibit piezoelectric coefficients of 5.3 picocoulombs per newton or 157.5 x 10(-3) volt meters per newton and nearly an order of magnitude enhancement of the mechanical flexibility compared with pure glycine crystals. With its natural compatibility and degradability in physiological environments, glycine-PVA films may enable the development of transient implantable electromechanical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available