4.6 Article

Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening

Journal

PLOS ONE
Volume 16, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0256319

Keywords

-

Funding

  1. COFUPRO [A/GTO/RGAG-2014-076-Consorcio de Fundaciones PRODUCE]
  2. Mexican Council of Science and Technology (CONACyT) [261122]

Ask authors/readers for more resources

In this study, a transcriptomic analysis on wild and cultivated pepper varieties at two fruit maturation stages revealed that the two peppers showed similar gene expression patterns but with differences in genes related to shape, size, ethylene, and secondary metabolites biosynthesis. Domestication of chilli pepper could lead to specific changes in gene expression related to desired commercial traits such as shape, size, and secondary metabolite production.
Chili pepper (Capsicum annuum) is one of the most important crops worldwide. Its fruits contain metabolites produced over the maturation process like capsaicinoids and carotenoids. This metabolic process produces internal changes in flavor, color, texture, and aroma in fruits to make them more attractive for seed dispersal organisms. The chiltepin (C. annuum L. var. glabriusculum) is a wild variety of the C. annuum L. species that is considered a source of genetic resources that could be used to improve the current chili crops. In this study, we performed a transcriptomic analysis on two fruit maturation stages: immature stage (green fruit) and mature stage (red fruit) of a wild and a cultivated pepper variety. We found 19,811 genes expressed, and 1,008 genes differentially expressed (DEGs) in at least one of the five contrast used; 730 DEGs were found only in one contrast, and most DEGs in all contrasts were downregulated. GO enrichment analysis showed that the majority of DEGs are related to stress responses. KEGG enrichment analysis detected differences in expression patterns in metabolic pathways related to phenylpropanoid biosynthesis, secondary metabolites, plant hormone signal transduction, carotenoid biosynthesis and sesquiterpenoid and triterpenoid biosynthesis. We selected 105 tomato fruit ripening-related genes, and found 53 pepper homologs differentially expressed related to shape, size, and secondary metabolite biosynthesis. According to the transcriptome analysis, the two peppers showed very similar gene expression patterns; differences in expression patterns of genes related to shape, size, ethylene and secondary metabolites biosynthesis suggest that changes produced by domestication of chilli pepper could be very specific to the expression of genes related to traits desired in commercial fruits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available