4.8 Article

Liver X Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1

Journal

GASTROENTEROLOGY
Volume 150, Issue 3, Pages 650-658

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2015.11.015

Keywords

Hypertriglyceridemia; Lipid-Sensing; Fat Absorption; Triglyceride-Rich Lipoproteins

Funding

  1. European Genomic Institute for Diabetes [ANR-10-LABX-46]
  2. European Commission, Fondation Leducq Transatlantic Networks of Excellence in Cardiovascular Research [10CVD04]
  3. Instituto de Salud Carlos III (FIS) [PI11/00315]
  4. Institut Universitaire de France

Ask authors/readers for more resources

BACKGROUND & AIMS: Reducing postprandial triglyceridemia may be a promising strategy to lower the risk of cardiovascular disorders associated with obesity and type 2 diabetes. In enterocytes, scavenger receptor class B, type 1 (SR-B1, encoded by SCARB1) mediates lipid-micelle sensing to promote assembly and secretion of chylomicrons. The nuclear receptor subfamily 1, group H, members 2 and 3 (also known as liver X receptors [LXRs]) regulate genes involved in cholesterol and fatty acid metabolism. We aimed to determine whether intestinal LXRs regulate triglyceride absorption. METHODS: C57BL/6J mice were either fed a cholesterol-enriched diet or given synthetic LXR agonists (GW3965 or T0901317). We measured the production of chylomicrons and localized SR-B1 by immunohistochemistry. Mechanisms of postprandial triglyceridemia and SR-B1 regulation were studied in Caco-2/TC7 cells incubated with LXR agonists. RESULTS: In mice and in the Caco-2/TC7 cell line, LXR agonists caused localization of intestinal SR-B1 from apical membranes to intracellular organelles and reduced chylomicron secretion. In Caco-2/TC7 cells, LXR agonists reduced SR-B1-dependent lipidic-micelle-induced Erk phosphorylation. LXR agonists also reduced intracellular trafficking of the apical apolipoprotein B pool toward secretory compartments. LXR reduced levels of SR-B1 in Caco-2/TC7 cells via a post-transcriptional mechanism that involves microRNAs. CONCLUSION: In Caco-2/TC7 cells and mice, intestinal activation of LXR reduces the production of chylomicrons by a mechanism dependent on the apical localization of SR-B1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available