4.5 Article

Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism

Journal

MOLECULAR PLANT-MICROBE INTERACTIONS
Volume 34, Issue 11, Pages 1250-1266

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-06-21-0142-R

Keywords

beta-aminobutyric acid; Botrytis cinerea; defense response; grape berries; MYB transcription factor; quality maintenance

Funding

  1. National Natural Science Foundation of China [31671913]
  2. Natural Science Foundation of Ningbo City [2018A610224]
  3. Open Foundation for Institute of Three Gorges research [2019sxxyjd08]

Ask authors/readers for more resources

The study found that BABA can induce resistance against Botrytis cinerea in grapes, but might lead to decreased soluble sugar content. VvMYB44 could play a key role in initiating defense responses against fungal pathogens in grape berries.
Defense elicitors can induce fruit disease resistance to control postharvest decay but may incur quality impairment. Our present work aimed to investigate the resistance against Botrytis cinerea induced by the elicitor beta-aminobutyric acid (BABA) and to elucidate the specific transcriptional mechanism implicated in defense-related metabolic regulations. The functional dissection results demonstrated that, after inoculation with the fungal necrotroph B. cinerea, a suite of critical genes encoding enzymes related to the sucrose metabolism and phenylpropanoid pathway in priming defense in grapes were transcriptionally induced by treatment with 10 mM BABA. In contrast, more UDP-glucose, a shared precursor of phenylpropanoid and sucrose metabolism, may be redirected to the phenylpropanoid pathway for the synthesis of phytoalexins, including trans-resveratrol and E-viniferin, in 100 mM BABA-treated grapes, resulting in direct resistance but compromised soluble sugar contents. An R2R3-type MYB protein from Vitis vinifera, VvMYB44, was isolated and characterized. VvMYB44 expression was significantly induced upon the grapes expressed defensive reaction. Subcellular localization, yeast two-hybrid, and coimmunoprecipitation assays revealed that the nuclear-localized VvMYB44 physically interacted with the salicylic acid-responsive transcription coactivator NPR1 in vivo for defense expression. In addition, VvMYB44 directly bound to the promoter regions of sucrose and phenylpropanoid metabolism-related genes and transactivated their expression, thus tipping the balance of antifungal compound accumulation and soluble sugar maintenance. Hence, these results suggest that 2R-type VvMYB44 might be a potential positive participant in BABA-induced priming defense in grape berries that contributes to avoiding the excessive consumption of soluble sugars during the postharvest storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available