4.7 Article

Tar abatement for clean syngas production during biomass gasification in a dual fluidized bed

Journal

FUEL PROCESSING TECHNOLOGY
Volume 152, Issue -, Pages 116-123

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2016.05.042

Keywords

Biomass gasification; Syngas cleaning; Dual fluidized-bed; Catalytic filter

Funding

  1. European Commission (EC Project UNIQUE) [211517-ENERGY FP7]
  2. Spanish Ministry MINECO [ENE2014-56857-R]
  3. Spanish Ministry of Economy and Competitiveness

Ask authors/readers for more resources

Syngas obtained from biomass gasification needs to fulfil strong purity requirements before being used as raw material in power energy generation or chemicals manufacturing. The use of hot catalytic filter candles inside the freeboard of fluidized bed gasifiers allows obtaining clean syngas without dust and low tar content. The tar removal efficiency of four different catalytic filter designs was evaluated with real biomass tar produced in situ in a dual fluidized bed gasifier (DFBG). The tar conversion reached at the outlet of the fluidized bed gasifier was larger for the candles with catalytically active layer design. If a monolith is also incorporated, the tar conversion increases up to 95% which is one of the highest values obtained up to date. In this case, the tar content at the outlet of the catalytic filter was as low as 0.2 g/Nm(3) (N-2 free, d.b.). (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Energy & Fuels

Coal and biomass combustion with CO2 capture by CLOU process using a magnetic Fe-Mn-supported CuO oxygen carrier

Inaki Adanez-Rubio, Ivan Sampron, Maria Teresa Izquierdo, Alberto Abad, Pilar Gayan, Juan Adanez

Summary: This study investigates the combustion and CO2 capture efficiency of coal and biomass using a magnetic Cu-based oxygen carrier. The results show that complete combustion of the fuel to CO2 and H2O can be achieved, with CO2 capture efficiency reaching up to 97% at the appropriate temperature.
Article Energy & Fuels

Relevance of oxygen carrier properties on the design of a chemical looping combustion unit with gaseous fuels

Alberto Abad, Pilar Gayan, Francisco Garcia-Labiano, Luis F. de Diego, Maria T. Izquierdo, Teresa Mendiara, Juan Adanez

Summary: Chemical looping combustion (CLC) is an innovative technology that combines fuel combustion with CO2 capture using oxygen carriers. This study investigated the performance of CuO/Al2O3 and Fe2O3/Al2O3 particles as oxygen carriers in a CLC unit, and developed a mathematical model to simulate their behavior. The model successfully predicted the combustion performance of these materials in both a smaller-scale unit and a larger-scale unit.

GREENHOUSE GASES-SCIENCE AND TECHNOLOGY (2023)

Article Energy & Fuels

Development of new Mn-based oxygen carriers using MgO and SiO2 as supports for Chemical Looping with Oxygen Uncoupling (CLOU)

Inaki Adanez-Rubio, Tobias Mattisson, Marijke Jacobs, Juan Adanez

Summary: Chemical Looping with Oxygen Uncoupling (CLOU) is a technology that separates the oxygen for fuel combustion using an oxygen carrier in a fuel reactor. This study investigates the behavior of Mn/Mg/Si system as oxygen carriers for CLOU. The most reactive oxygen carriers without Si in the structure were found to be M24Mg76 and M48Mg51. These carriers showed good reactivity and mechanical stability in a batch fluidized bed reactor.
Article Chemistry, Applied

Developing magnetic, durable, agglomeration resistant and reactive copper-based oxygen carrier particles by promoting a kaolin-reinforced, manganese-iron mixed oxide support

Amirhossein Filsouf, Inaki Adanez-Rubio, Teresa Mendiara, Alberto Abad, Juan Adanez

Summary: Chemical looping with oxygen uncoupling (CLOU) process utilizes two interconnected fluidized bed reactors, where Cu-based oxygen carriers containing a kaolin-reinforced MnFe mixed oxide as a magnetic support were prepared to improve their properties. The effects of kaolin concentration and calcination temperature on the carriers' magnetic permeability, crushing strength, attrition, agglomeration resistance, and reactivity were studied. Two oxygen carriers containing 28.5 wt% CuO-5 wt% kaolin and 30 wt% CuO-7.5 wt% kaolin, respectively, both calcined at 1100 degrees C, showed improved mechanical resistance and maintained their magnetic properties and reactivity.

FUEL PROCESSING TECHNOLOGY (2023)

Article Energy & Fuels

Energy use of biogas through chemical looping technologies with low-cost oxygen carriers

Arturo Cabello, Teresa Mendiara, M. Teresa Izquierdo, Francisco Garcia-Labiano, Alberto Abad

Summary: This study investigated the use of a low-cost Fe-based residue as an oxygen carrier in the Chemical Looping Combustion (CLC) and Chemical Looping Reforming (CLR) processes with biogas. The results showed that the methane combustion efficiency in the CLC process was higher (around 86%) compared to other low-cost Fe-based materials. The dry reforming of biogas in the CLR process achieved about 55% methane conversion and a yield of 1.3 mol (CO + H2)/mol CH4 for syngas production.
Article Energy & Fuels

Reaction kinetics of a NiO-based oxygen carrier with ethanol to be applied in chemical looping processes

Margarita de las Obras Loscertales, Alberto Abad, Francisco Garcia-Labiano, Juan A. C. Ruiz, Juan Adanez

Summary: The use of bio-ethanol in chemical looping combustion and reforming has the potential to produce energy and/or hydrogen, as well as remove CO2 from the atmosphere. This study examines the kinetics of ethanol conversion using a NiO-based material as the oxygen carrier. Experiment results suggest that ethanol decomposition products, rather than direct reduction with ethanol, are responsible for NiO reduction. The high temperature kinetics of ethanol conversion processes were determined, and a reaction pathway was proposed for detailed fuel reactor models.
Article Energy & Fuels

Assessment of the chemical looping gasification of wheat straw pellets at the 20 kWth scale

Oscar Condori, Alberto Abad, Maria T. Izquierdo, Luis F. de Diego, Francisco Garcia-Labiano, Juan Adanez

Summary: In this study, the Biomass Chemical Looping Gasification (BCLG) process was evaluated using wheat straw pellets and ilmenite as the fuel feedstock and oxygen carrier respectively. The effect of different operational variables on process performance and syngas yield was analyzed, and no agglomeration issues were observed during the smooth operation of the CLG unit. The oxygen transference rate in the fuel reactor was found to be the main factor affecting syngas yield and cold gas efficiency.
Article Engineering, Chemical

Performance of a kaolin-doped, magnetic Cu-based oxygen carrier in biomass combustion

Inaki Adanez-Rubio, Amirhossein Filsouf, Merve Durmaz, Teresa Mendiara, Pilar Gayan, Juan Adanez

Summary: This study focuses on testing a Cu-based oxygen carrier with enhanced mechanical properties due to the addition of kaolin in the combustion of different biomass types in a continuous CLOU unit. Complete combustion of the biomass types was achieved and higher CO2 capture efficiencies were observed at 800-950 degrees C compared to without kaolin doping. The oxygen carrier retained its magnetic properties without any agglomeration problems after 80 hours of hot circulation operation.

POWDER TECHNOLOGY (2023)

Correction Chemistry, Applied

Technical analysis of blending fusel to reduce carbon emission and pollution emission of diesel engine (vol 241, 107560, 2023)

Jia Liu, Juntong Dong, Xiaodan Li, Teng Xu, Zhenguo Li, Jeffrey Dankwa Ampah, Mubasher Ikram, Shihai Zhang, Chao Jin, Zhenlong Geng, Tianyun Sun, Haifeng Liu

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Understanding the role of Ni-based single-atom alloys on the selective hydrodeoxygenation of bio-oils

Seba Alareeqi, Daniel Bahamon, Kyriaki Polychronopoulou, Lourdes F. Vega

Summary: This study explores the potential application of single-atom-alloy (SAA) catalysts in bio-oils hydrodeoxygenation refining using density functional theory (DFT) and microkinetic modeling. It establishes the relationships between stability, adsorptive properties, and activity structures for bio-oil derivatives, providing guidance for the synthesis of cost-effective SAA combinations.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Experimental and computational study on xylan pyrolysis: The pyrolysis mechanism of main branched monosaccharides

Bin Hu, Wen -Ming Zhang, Xue-Wen Guo, Ji Liu, Xiao Yang, Qiang Lu

Summary: This study explored the pyrolysis behaviors and mechanisms of different monosaccharides, including arabinose, galactose, galacturonic acid, and glucuronic acid. The roles of structural differences in these monosaccharides were analyzed, and it was found that glucuronic acid undergoes a special C-C bond breaking reaction during pyrolysis. The findings provide a deep understanding of the pyrolysis chemistry of hemicellulose and the role of different branches.

FUEL PROCESSING TECHNOLOGY (2024)

Review Chemistry, Applied

A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses

Youwei Zhi, Donghai Xu, Guanyu Jiang, Wanpeng Yang, Zhilin Chen, Peigao Duan, Jie Zhang

Summary: Hydrothermal carbonization (HTC) is an effective method for the harmless disposal of municipal sludge (MS) and offers potential applications for the obtained products. Optimizing reaction conditions, coupling with other waste materials, and combining different processes can improve the performance of HTC. Furthermore, HTC contributes to energy recovery and enhances the quality of life cycle assessment.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Integrated hydropyrolysis and vapor-phase hydrodeoxygenation process with Pd/Al2O3 for production of advanced oxygen-containing biofuels from cellulosic wastes

Jia Wang, Jianchun Jiang, Dongxian Li, Xianzhi Meng, Arthur J. Ragauskas

Summary: This study presents a scalable process for converting holocellulose and cellulosic wastes into advanced oxygen-containing biofuels with high furan, cyclic ketone, and ethanol content. By combining hydropyrolysis and vapor-phase hydrodeoxygenation using Pd/Al2O3 as a catalyst, the researchers achieved high yields and conversions. The integrated process holds great promise for biomass waste conversion into advanced biofuels.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

A 3D computational study of the formation, growth and oxidation of soot particles in an optically accessible direct-injection spark-ignition engine using quadrature-based methods of moments

Florian Held, Jannis Reusch, Steffen Salenbauch, Christian Hasse

Summary: The accurate prediction and assessment of soot emissions in internal combustion engines are crucial for the development of sustainable powertrains. This study presents a detailed quadrature-based method of moments (QMOM) soot model coupled with a state-of-the-art flow solver for the simulation of gasoline engines. The model accurately describes the entire cause-and-effect chain of soot formation, growth and oxidation. Experimental validation and engine cycle simulations are used to identify the root cause of observed soot formation hotspots.

FUEL PROCESSING TECHNOLOGY (2024)