4.7 Article

Influences of platform heating and post-processing stress relief treatment on the mechanical properties and microstructure of selective-laser-melted AlSi10Mg alloys

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2021.141612

Keywords

Selective laser melting; Alsi10Mg alloy; Mechanical properties; Build height; Platform heating

Funding

  1. Levtzion Scholarships of the council for higher education

Ask authors/readers for more resources

This study investigated the effects of the hot-build platform and post-processing stress relief treatment on the mechanical properties and microstructure of an AlSi10Mg alloy manufactured by selective laser melting. The research found that the distance from the heated build platform influenced surface hardness, dynamic performance, and relative density, while the stress relief treatment resulted in significant softening in mechanical properties. By correlating these findings to various fundamental characteristics, the study provided insight into the competing strengthening mechanisms activated during the fabrication process.
This study focused on two essential issues in the fabrication strategy utilized in selective laser melting (SLM) technology: 1) the influence of the hot-build platform and 2) the effects of a post-processing stress relief (SR) treatment on the mechanical properties and microstructure of an AlSi10Mg alloy manufactured by SLM. To examine the mechanical properties, surface hardness measurements and split Hopkinson pressure bar (SHPB) experiments were conducted on samples in the as-fabricated condition and following SR treatment. The samples were extracted from the original SLM product at constant distances from the build platform. Considerable variations in the mechanical properties and damage accumulation resulting from the fabrication process and subsequent post-processing SR treatment were successfully correlated to fundamental characteristics in terms of relative porosity, on-surface residual stress, microstructure and texture, solubility, and phase composition. It was found that with increasing distance from the heated build platform, there was a graded increase in the surface hardness and dynamic performance, which are attributed to several competing strengthening mechanisms that were activated owing to the fast cooling rates. Conversely, the reduced thermal gradient and lower solidification rate close to the base led to a higher relative density, as indicated by the smaller size of the keyhole pores. The SR treatment resulted in microstructural changes with uniform and low residual stresses, which led to a significant softening in the mechanical properties, regardless of the building height.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available