4.7 Article

Biodegradation of polystyrene by bacteria from the soil in common environments

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 416, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126239

Keywords

Polystyrene; Biodegradation; Microorganism; Hydroxylation

Funding

  1. C1 Gas Refinery Program - Ministry of Science and ICT [NRF-2018M3D3A1A01056181]
  2. National Research Foundation of Korea, Republic of Korea [NRF-2020R1C1C1004178, NRF-2018R1A4A1023882]

Ask authors/readers for more resources

This study identified two new bacterial strains, Pseudomonas lini JNU01 and Acinetobacter johnsonii JNU01, with high biodegradation efficiency towards PS. Through bioinformatics and transcriptional analysis, the involvement of alkane-1-monooxygenase (AlkB) in PS biodegradation was confirmed. These findings provide significant insights into the potential of Pseudomonas sp. and Acinetobacter sp. as decomposers of PS.
Polystyrene (PS), a major plastic waste, is difficult to biodegrade due to its unique chemical structure that comprises phenyl moieties attached to long linear alkanes. In this study, we investigated the biodegradation of PS by mesophilic bacterial cultures obtained from various soils in common environments. Two new strains, Pseudomonas lini JNU01 and Acinetobacter johnsonii JNU01, were specifically enriched in non-carbonaceous nutrient medium, with PS as the only source of carbon. Their growth after culturing in basal media increased more than 3fold in the presence of PS. Fourier transform infrared spectroscopy analysis, used to confirm the formation of hydroxyl groups and potentially additional chemical bond groups, showed an increase in the amount of oxidized PS samples. Moreover, field emission scanning electron microcopy analysis confirmed PS biodegradation by biofilms of the screened microbes. Water contact angle measurement additionally offered insights into the increased hydrophilic characteristics of PS films. Bioinformatics and transcriptional analysis of A. johnsonii JNU01 revealed alkane-1-monooxygenase (AlkB) to be involved in PS biodegradation, which was confirmed by the hydroxylation of PS using recombinant AlkB. These results provide significant insights into the discovery of novel functions of Pseudomonas sp. and Acinetobacter sp., as well as their potential as PS decomposers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available