4.7 Article

Impact of urban morphology on the spatial and temporal distribution of PM2.5 concentration: A numerical simulation with WRF/CMAQ model in Wuhan, China

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 290, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112427

Keywords

Urban morphology; Numerical simulation; PM2; 5 concentration; Spatiotemporal distribution

Funding

  1. National Natural Science Foundation of China [51538004]

Ask authors/readers for more resources

This study uses Wuhan as an example to analyze the spatial and temporal distribution characteristics of PM2.5 in the winter of 2015 through urban morphology indicators. The results show that building density and urban fraction have the most significant impact on PM2.5 concentration, with the highest concentration occurring during the morning rush hour. Increasing urban morphology indicators at night can decrease PM2.5 concentration, but during the daytime, increasing floor area ratio and building height will increase PM2.5 concentration.
The urban morphology can significantly change the urban microclimate, which in turn affects the diffusion of air pollutants. Urban planning is the most important means of shaping urban morphology. Therefore, this study takes Wuhan as an example and uses the method of WRF/CMAQ coupled UCM model to analyze the spatial and temporal distribution characteristics of PM2.5 in the Wuhan metropolitan area in winter 2015. The six most important urban morphological indicators in urban planning: the floor area ratio and building height, building density and building width, vegetation coverage ratio, and urban fraction, are selected and classified into three groups. Studying their impact on the spatial and temporal distribution of PM2.5 concentration provides support for urban planners to improve air quality. The results show that the maximum value of PM2.5 concentration in Wuhan urban area occurs in the morning rush hour, and PM2.5 is distributed concentrically in the downtown of the city (within the second ring highway) according to the highways around the city. The PM2.5 concentration in the downtown area with the most extensive urban morphological index is the highest, and it decreases with increasing distance from the downtown. Among the six indicators, building density and urban fraction have the most significant impact on PM2.5 concentration because they have the greatest impact on the wind speed at 10 m. The height of the planetary boundary layer is the key factors affect the vertical and horizontal diffusion of air pollutants. Except for the vegetation coverage ratio, the increase of other urban morphological indicators will lead to a decrease of PM2.5 concentration in Wuhan urban area at night. During the daytime, increasing the floor area ratio and building height will cause an increasing of PM2.5 concentration, but other indicators have the opposite effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available