4.7 Review

Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives


Volume 46, Issue 63, Pages 31963-31983


DOI: 10.1016/j.ijhydene.2021.06.218


Hydrogen; Energy storage; Renewable energy


  1. Research Council of Norway [295605]

Ask authors/readers for more resources

Hydrogen energy storage systems are technically feasible but require cost reductions for commercial attractiveness; low energy efficiency of some components affects costs; with the expected increase of intermittent renewable energy in power systems, hydrogen technology may see further development; hybrid systems offer the best solution but need to be tailored to specific situations for optimal efficiency.
This paper is a critical review of selected real-world energy storage systems based on hydrogen, ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics, control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible, they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes, hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However, there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally, it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with shortterm energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system. Therefore, control systems and energy management strategies are important factors to achieve optimal results, both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems, new hybrid energy systems could be tailored to fit each situation and to reduce energy losses. (c) 2021 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).


I am an author on this paper
Click your name to claim this paper and add it to your profile.


Primary Rating

Not enough ratings

Secondary Ratings

Scientific rigor
Rate this paper


No Data Available
No Data Available