4.7 Article

Paleogeographic position of the central Dodecanese Islands, southeastern Greece: The push-pull of Pelagonia

Journal

GEOLOGICAL SOCIETY OF AMERICA BULLETIN
Volume 134, Issue 5-6, Pages 1506-1528

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/B36095.1

Keywords

-

Funding

  1. Austrian Academy of Sciences (Emil Suess-Erbschaft)
  2. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

The study investigates the tectonic history of the central Dodecanese Islands, particularly the islands of Kalymnos and Telendos. It identifies different tectonic units on the islands and their correlation with the Aegean and western Anatolian. The research reveals the paleogeographic position of the islands and their escape from subduction and high-pressure metamorphism.
The paleogeographic position of the central Dodecanese Islands at the transition between the Aegean and Anatolian plates plays a considerable role in understanding the link between both geologically unique domains. In this study, we investigate the tectonic history of the central Dodecanese Islands and the general correlation with the Aegean and western Anatolian and focus on the poorly studied islands of Kalymnos and Telendos. Three different major tectonic units were mapped on both islands from bottom to top: (1) The Kefala Unit consists of late Paleozoic, fossil-rich limestones, which have been deformed into a SE-vergent fold-and-thrust belt sealed by an up to 200-m-thick wildflysch-type olistostrome with marble and ultramafic blocks on a scale of tens of meters. (2) The Marina Basement Unit consists of a Variscan amphibolite facies basement with garnet mica schists, quartzites, and amphibolites. (3) Verrucano-type formation violet shales and Mesozoic unmetamorphosed limestones form the Marina Cover Unit. Correlation of these units with other units in the Aegean suggests that Kalymnos is paleogeographically located at the southern margin of the Pelagonian domain, and therefore it was in a structurally upper tectonic position during the Paleogene Alpine orogeny. New white mica 40Ar/39Ar ages confirm the Carboniferous deformation of the Marina Basement Unit followed by a weak Triassic thermal event. Single-grain white mica 40Ar/39Ar ages from pressure solution cleavage of the newly defined Telendos Thrust suggest that the Marina Basement Unit was thrusted toward the north on top of the Kefala Unit in the Paleocene. Located at a tectonically upper position, the units exposed in the central Dodecanese escaped subduction and the synorogenic, high-pressure metamorphism. However, these units were affected by post-orogenic extension, and the contact between the Marina Basement Unit and the non-metamorphic Marina Cover Unit has been reactivated by the cataclastic top-to-SSW, low-angle Kalymnos Detachment. Zircon (U-Th)/He ages from the Kefala and Marina Basement Units are ca. 30 Ma, which indicates that exhumation and cooling below the Kalymnos Detachment started in the Oligocene. Conjugate brittle high-angle normal fault systems, which resulted in the formation of four major WNW-ESE-trending graben systems on Kalymnos, localized mainly in the Marina Cover Unit and probably rooted in the mechanically linked Kalymnos Detachment. Since Oligo-Miocene deformation in the northern Dodecanese records top-to-NNE extension and the Kalymnos Detachment accommodated top-to-SSW extension, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent. The paleogeographic position of the central Dodecanese Islands at the transition between the Aegean and Anatolian plates plays a considerable role in understanding the link between both geologically unique domains. In this study, we investigate the tectonic history of the central Dodecanese Islands and the general correlation with the Aegean and western Anatolian and focus on the poorly studied islands of Kalymnos and Telendos. Three different major tectonic units were mapped on both islands from bottom to top: (1) The Kefala Unit consists of late Paleozoic, fossil-rich limestones, which have been deformed into a SE-vergent fold-and-thrust belt sealed by an up to 200-m-thick wildflysch-type olistostrome with marble and ultramafic blocks on a scale of tens of meters. (2) The Marina Basement Unit consists of a Variscan amphibolite facies basement with garnet mica schists, quartzites, and amphibolites. (3) Verrucano-type formation violet shales and Mesozoic unmetamorphosed limestones form the Marina Cover Unit. Correlation of these units with other units in the Aegean suggests that Kalymnos is paleogeographically located at the southern margin of the Pelagonian domain, and therefore it was in a structurally upper tectonic position during the Paleogene Alpine orogeny. New white mica 40Ar/39Ar ages confirm the Carboniferous deformation of the Marina Basement Unit followed by a weak Triassic thermal event. Single-grain white mica 40Ar/39Ar ages from pressure solution cleavage of the newly defined Telendos Thrust suggest that the Marina Basement Unit was thrusted toward the north on top of the Kefala Unit in the Paleocene. Located at a tectonically upper position, the units exposed in the central Dodecanese escaped subduction and the synorogenic, high-pressure metamorphism. However, these units were affected by post-orogenic extension, and the contact between the Marina Basement Unit and the non-metamorphic Marina Cover Unit has been reactivated by the cataclastic top-to-SSW, low-angle Kalymnos Detachment. Zircon (U-Th)/He ages from the Kefala and Marina Basement Units are ca. 30 Ma, which indicates that exhumation and cooling below the Kalymnos Detachment started in the Oligocene. Conjugate brittle high-angle normal fault systems, which resulted in the formation of four major WNW-ESE-trending graben systems on Kalymnos, localized mainly in the Marina Cover Unit and probably rooted in the mechanically linked Kalymnos Detachment. Since Oligo-Miocene deformation in the northern Dodecanese records top-to-NNE extension and the Kalymnos Detachment accommodated top-to-SSW extension, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available