4.5 Article

Atypical functional connectome hierarchy impacts cognition in temporal lobe epilepsy

Journal

EPILEPSIA
Volume 62, Issue 11, Pages 2589-2603

Publisher

WILEY
DOI: 10.1111/epi.17032

Keywords

brain networks; cognition; hippocampus; MRI; temporal lobe epilepsy

Funding

  1. Canadian Institutes of Health Research [MOP-57840, MOP-123520]

Ask authors/readers for more resources

The study revealed bidirectional disruptions of sensory-paralimbic functional organization in TLE patients, which might contribute to cognitive impairments in multiple domains. Associations with paralimbic microstructure and sensorimotor atrophy suggest that system-level imbalance likely reflects complementary structural processes, ultimately leading to a broad spectrum of cognitive impairments.
Objective Drug-resistant temporal lobe epilepsy (TLE) is typically associated with hippocampal pathology. However, widespread network alterations are increasingly recognized and suggested to perturb cognitive function in multiple domains. Here we tested (1) whether TLE shows atypical cortical hierarchical organization, differentiating sensory and higher order systems; and (2) whether atypical hierarchy predicts cognitive impairment. Methods We studied 72 well-characterized drug-resistant TLE patients and 41 healthy controls, statistically matched for age and sex, using multimodal magnetic resonance imaging analysis and cognitive testing. To model cortical hierarchical organization in vivo, we used a bidirectional stepwise functional connectivity analysis tapping into the differentiation between sensory/unimodal and paralimbic/transmodal cortices. Linear models compared patients to controls. Finally, we assessed associations of functional anomalies to cortical atrophy and microstructural anomalies, as well as clinical and cognitive parameters. Results Compared to controls, TLE presented with bidirectional disruptions of sensory-paralimbic functional organization. Stepwise connectivity remained segregated within paralimbic and salience networks at the top of the hierarchy, and sensorimotor and dorsal attention at the bottom. Whereas paralimbic segregation was associated with atypical cortical myeloarchitecture and hippocampal atrophy, dysconnectivity of sensorimotor cortices reflected diffuse cortical thinning. The degree of abnormal hierarchical organization in sensory-petal streams covaried, with broad cognitive impairments spanning sensorimotor, attention, fluency, and visuoconstructional ability and memory, and was more marked in patients with longer disease duration and Engel I outcome. Significance Our findings show atypical functional integration between paralimbic/transmodal and sensory/unimodal systems in TLE. Differential associations with paralimbic microstructure and sensorimotor atrophy suggest that system-level imbalance likely reflects complementary structural processes, but ultimately accounts for a broad spectrum of cognitive impairments. Hierarchical contextualization of cognitive deficits promises to open new avenues for personalized counseling in TLE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available