4.7 Article

Changes in soil and rat gut microbial diversity after long-term exposure to the chiral fungicide epoxiconazole

Journal

CHEMOSPHERE
Volume 272, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129618

Keywords

Epoxiconazole; Enantiomers; Soil bacterial diversity; Gut microbiota

Funding

  1. National Key Research and Development Program of China [2016YFD0200207]

Ask authors/readers for more resources

The study revealed significant alterations in rat gut microbiota and soil microbial diversity after prolonged exposure to high concentrations of epoxiconazole. R,S-epoxiconazole exhibited improved bioactivity and less toxic effects at relatively low concentrations, suggesting its potential for environmental safety. It is recommended to use R,S-epoxiconazole at a relatively low concentration for better environmental safety.
In previous articles, it was found that epoxiconazole enantiomers can persist for a long time in the environment, causing severe environmental damage. Herein, we investigated alterations in the soil microbial community and rat gut microbiota after six weeks of treatment with rac-epoxiconazole or one of its enantiomers. The selected concentrations were 1, 2, and 6 times greater than the maximum residue limits (MRLs). The rat gut microbiota relative abundance in the feces significantly changed following exposure to rac-epoxiconazole or one of its enantiomers. At the phylum level, in the R,S-, S,R-epoxiconazole, and rac-treated groups, Firmicutes presented the greatest decrease in abundance; however, Spirochaetes presented the greatest increase in abundance in the rac- and S,R- epoxiconazole-treated groups. In response to R,S-epoxiconazole, Epsilonbacteraeota presented the greatest increase in abundance. In soil samples treated with epoxiconazole, the relative abundance of the soil bacterial community also changed. Proteobacteria presented the greatest decrease in abundance in the S,R- and rac-treated samples. However, Firmicutes presented the greatest increase in abundance. In the R,S-treated soil samples, the situation was the opposite. In general, prolonged exposure to epoxiconazole at high concentrations could initiate noticeable alterations in rat gut microbiota and soil microbial diversity. R,S-epoxiconazole had improved bioactivity and less toxic effects at relatively low concentrations. Therefore, we recommend using R,S-epoxiconazole at a relatively low concentration, which is better for environmental safety. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available