4.7 Review

CO2 mineral carbonation using industrial solid wastes: A review of recent developments

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 416, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.129093

Keywords

Mineral carbonation; Industrial solid wastes; Value-added byproducts; Scale-up applications

Funding

  1. National Key Projects for Fundamental Research and Development of China [2016YFB0600904]
  2. China Postdoctoral Science Foundation [2020TQ0392, P2019CL12]

Ask authors/readers for more resources

This paper reviews the development of CO2 mineral carbonation technologies using industrial solid waste as feedstock and identifies energy and cost consumption concerns as limitations for scale-up applications. Further research on process parameter optimization and equipment design is needed to address these limitations and improve the feasibility for industrial applications. Recovery of high-value products during the carbonation process is highlighted as a potential solution to improve the economic viability of the process. Additionally, suggestions for future research directions include evaluating CO2 net emission reduction through life cycle assessment and developing new energy-saving approaches.
CO2 mineral carbonation is a promising strategy to abate global warming. However, its industrial applications were still limited. This paper reviews the current developments of mineral carbonation technologies by using industrial solid wastes as feedstocks, aiming at searching the reasons of its limitation. Firstly, the pathways and principles for CO2 mineral carbonation are briefly introduced. Then, the carbonation potential and processes of the most representative and available industrial solid wastes are summarized and compared. Iron and steel slags exhibit great potential due to their high alkali content and reactivity. Based on the preliminary economic analysis, the reasons for the limitation of current scale-up applications of CO2 mineral carbonation are the concerns of energy and cost consumption. The process parameter optimization and equipment design for scale-up applications need to be extensively investigated. Meanwhile, the recovery of high-value products during the carbonation process improves the economy and make the process more promising for industrial applications. The feasibility for recovering various value-added byproducts such as precipitated calcium carbonate (PCC) and zeolites was reported and discussed in this paper. Lastly, two research directions, i.e. the evaluation of CO2 net emission reduction by life cycle assessment technique and developments of new energy-saving approaches, are suggested.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available