4.6 Article

Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges

Journal

EXPERT OPINION ON DRUG DELIVERY
Volume 14, Issue 3, Pages 331-340

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17425247.2016.1215301

Keywords

Cyclodextrin nanosponges; FTIR-ATR spectroscopy; hydrogel; Raman spectroscopy; HR-MAS NMR spectroscopy

Ask authors/readers for more resources

Introduction: In light of the recent development of new soft materials, nanostructured self-assembled systems have attracted attention in a variety of technological fields of high social impact. Cyclodextrin nanosponges (CDNS) represent a new and highly versatile class of cross-linked cyclodextrin (CD)-based nanoporous polymers. Their intriguing properties, including safety, biodegradability, negligible toxicity, marked swelling behavior, superior inclusion capability with respect to native CD, are the bases for potential for applications in drug delivery, tissue engineering and regenerative medicine. Areas covered: We report on the state-of-art concerning a detailed characterization of structural and dynamical features of CDNS explored by the combined use of different and complementary techniques, such as Fourier transform infrared absorption in attenuated total reflectance geometry (FTIR-ATR) and Raman spectroscopies, and high resolution magic angle spinning (HR-MAS) NMR spectroscopy. The ambitious objective is to furnish an exhaustive survey of the role played by hydrophobic and hydrophilic groups within the cross-linked network, in dry and swollen states, in determining the macroscopic functional features of CDNS. Expert opinion: The reported results may significantly contribute in the rational design and optimization of new stimuli-responsive systems exhibiting tunable inclusion/release properties, adapted to the therapeutic demands of pathology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available