4.6 Article

Neurodegeneration Induced by Anti-IgLON5 Antibodies Studied in Induced Pluripotent Stem Cell-Derived Human Neurons

Journal

CELLS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/cells10040837

Keywords

autoimmune encephalitis; IgLON5; phosphorylated tau; neurodegeneration

Categories

Funding

  1. Lundbeck Foundation through the Danish Society for Neuroscience

Ask authors/readers for more resources

Anti-IgLON5 antibodies induce neurodegenerative changes and cell death in human neurons, supporting the hypothesis that autoantibodies may play a role in the development of anti-IgLON5 disease. Further studies with different IgLON5 antibody samples on human neurons are needed to fully understand the mechanisms involved.
Anti-IgLON5 disease is a progressive neurological disorder associated with autoantibodies against a neuronal cell adhesion molecule, IgLON5. In human postmortem brain tissue, the neurodegeneration and accumulation of hyperphosphorylated tau (p-tau) are found. Whether IgLON5 antibodies induce neurodegeneration or neurodegeneration provokes an immune response causing inflammation and antibody formation remains to be elucidated. We investigated the effects of anti-IgLON5 antibodies on human neurons. Human neural stem cells were differentiated for 14-48 days and exposed from Days 9 to 14 (short-term) or Days 13 to 48 (long-term) to either (i) IgG from a patient with confirmed anti-IgLON5 antibodies or (ii) IgG from healthy controls. The electrical activity of neurons was quantified using multielectrode array assays. Cultures were immunostained for beta-tubulin III and p-tau and counterstained with 4 ',6-Diamidine-2 '-phenylindole dihydrochloride (DAPI). To study the impact on synapses, cultures were also immunostained for the synaptic proteins postsynaptic density protein 95 (PSD95) and synaptophysin. A lactate dehydrogenase release assay and nuclei morphology analysis were used to assess cell viability. Cultures exposed to anti-IgLON5 antibodies showed reduced neuronal spike rate and synaptic protein content, and the proportion of neurons with degenerative appearance including p-tau (T205)-positive neurons was higher when compared to cultures exposed to control IgG. In addition, cell death was increased in cultures exposed to anti-IgLON5 IgG for 21 days. In conclusion, pathological anti-IgLON5 antibodies induce neurodegenerative changes and cell death in human neurons. This supports the hypothesis that autoantibodies may induce the neurodegenerative changes found in patients with anti-IgLON5-mediated disease. Furthermore, this study highlights the potential use of stem cell-based in vitro models for investigations of antibody-mediated diseases. As anti-IgLON5 disease is heterogeneous, more studies with different IgLON5 antibody samples tested on human neurons are needed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available