4.6 Review

The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks

Journal

CANCERS
Volume 13, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13092042

Keywords

hallmarks of cancer; poly (ADP-ribose) polymerase; oncogenes; tumor suppressors; cell death; replicative immortality; metabolic reprogramming

Categories

Funding

  1. National Research, Development and Innovation Office [GINOP-2.3.2-15-2016-00020, GINOP-2.3.2-15-2016-00048, OTKA K132193]

Ask authors/readers for more resources

PARP proteins play crucial roles in various aspects of cancer development, with PARP1 being particularly important in oncology treatments. Besides PARP1, the potential roles of other PARPs in influencing cancer traits should not be overlooked.
Simple Summary Poly (ADP-ribose) polymerase (PARP) proteins regulate DNA damage correction, replication, and gene transcription. By controlling pivotal aspects of these processes, PARPs are heavily implicated in cancer development. Inhibitors of PARPs, approved for cancer chemotherapy a few years ago, have achieved great success against tumors of the breast and ovary carrying mutations in the BRCA1/2 genes. The spectrum of the inhibitors is avidly sought to be extended to tumors with different genetic backgrounds and cancers of other origins. This pursuit requires thorough apprehension of PARP-dependent processes affecting cancer development. The hallmarks of cancer are acquired by defining capabilities that differentiate cancer cells from their normal counterparts. Here, in two joint papers, we walk through the connections between these cancer traits and PARP functions. The present review focuses on how PARPs affect the features of cancer that can be attributed to cell-intrinsic changes increasing proliferative potential and survival capabilities. In a kindred paper, we explore the PARP association of cancer hallmarks that derive from tissue-level reorganization in tumors and intercellular interactions of cancer cells. The 17-member poly (ADP-ribose) polymerase enzyme family, also known as the ADP-ribosyl transferase diphtheria toxin-like (ARTD) enzyme family, contains DNA damage-responsive and nonresponsive members. Only PARP1, 2, 5a, and 5b are capable of modifying their targets with poly ADP-ribose (PAR) polymers; the other PARP family members function as mono-ADP-ribosyl transferases. In the last decade, PARP1 has taken center stage in oncology treatments. New PARP inhibitors (PARPi) have been introduced for the targeted treatment of breast cancer 1 or 2 (BRCA1/2)-deficient ovarian and breast cancers, and this novel therapy represents the prototype of the synthetic lethality paradigm. Much less attention has been paid to other PARPs and their potential roles in cancer biology. In this review, we summarize the roles played by all PARP enzyme family members in six intrinsic hallmarks of cancer: uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, reprogrammed energy metabolism, and escape from replicative senescence. In a companion paper, we will discuss the roles of PARP enzymes in cancer hallmarks related to cancer-host interactions, including angiogenesis, invasion and metastasis, evasion of the anticancer immune response, and tumor-promoting inflammation. While PARP1 is clearly involved in all ten cancer hallmarks, an increasing body of evidence supports the role of other PARPs in modifying these cancer hallmarks (e.g., PARP5a and 5b in replicative immortality and PARP2 in cancer metabolism). We also highlight controversies, open questions, and discuss prospects of recent developments related to the wide range of roles played by PARPs in cancer biology. Some of the summarized findings may explain resistance to PARPi therapy or highlight novel biological roles of PARPs that can be therapeutically exploited in novel anticancer treatment paradigms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available