4.4 Article

How walls affect the dynamics of self-phoretic microswimmers

Journal

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
Volume 225, Issue 8-9, Pages 1843-1874

Publisher

SPRINGER HEIDELBERG
DOI: 10.1140/epjst/e2016-60148-1

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [EP/G026440/1] Funding Source: researchfish
  2. EPSRC [EP/G026440/1] Funding Source: UKRI

Ask authors/readers for more resources

We study the effect of a nearby planar wall on the propulsion of a spherical phoretic micro-swimmer driven by reactions on its surface. An asymmetric coverage of catalysts on its surface which absorb reactants and generate products gives rise to an anisotropic interfacial flow that propels the swimmer. We analyse the near-wall dynamics of such a self-phoretic swimmer as a function of the asymmetric catalytic coverage of the surface. By an analysis of the fundamental singularities of the flow and concentration or electrostatic potential gradients generated we are able to obtain and rationalise a phase diagram of behaviours as a function of the characteristics of the swimmer surface. We find a variety of possible behaviours, from bound states where the swimmer remains near the wall to scattering or repulsive trajectories in which the swimmer ends far from the wall. The formation of some of the bound states is a purely wall-phoretic effect and cannot be obtained by simply mapping a phoretic swimmer to a hydrodynamic one.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available