4.1 Article

Melting of nanoparticle-enhanced phase change material inside an enclosure heated by laminar heat transfer fluid flow

Journal

Publisher

EDP SCIENCES S A
DOI: 10.1051/epjap/2016150422

Keywords

-

Ask authors/readers for more resources

The proposed work presents a numerical investigation of the melting of a phase change material (PCM: Paraffin wax P116) dispersed with nanoparticles (Al2O3) in a latent heat storage unit (LHSU). The latter is composed of a number of vertical and identical slabs of nano-enhanced phase change material (NEPCM) separated by rectangular channels through which passes heat transfer fluid (HTF: water). A mathematical model based on the conservation equations of mass, momentum and energy has been developed. The resulting equations are discretized using the finite volume approach. The numerical model has been validated by experimental and numerical results published in literature. Numerical investigations have been conducted to evaluate the effects of the volumetric fraction of nanoparticles, HTF mass flow rate and inlet temperature on the latent heat storage unit's thermal behaviour and performance. Modelling results show that the volumetric fraction, HTF mass flow rate and inlet temperature need to be designed to achieve a significant improvement in thermal performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available