4.7 Article

Preparation and Characterization of Chitosan-Coated Manganese-Ferrite Nanoparticles Conjugated with Laccase for Environmental Bioremediation

Journal

POLYMERS
Volume 13, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/polym13091453

Keywords

laccase; magnetic nanoparticles; chitosan; immobilized enzyme; bioremediation; diclofenac removal

Funding

  1. Sapienza University of Rome

Ask authors/readers for more resources

Bioremediation with immobilized enzymes offers advantages like increased selectivity, activity, and stability, while laccase has shown promise for removing various contaminants. The study utilized naked or modified MnFe2O4 magnetic nanoparticles as supports for immobilizing laccase, with the MNPs-CSin situ-lac system demonstrating the best performance in degrading diclofenac in repeated batches.
Bioremediation with immobilized enzymes has several advantages, such as the enhancement of selectivity, activity, and stability of biocatalysts, as well as enzyme reusability. Laccase has proven to be a good candidate for the removal of a wide range of contaminants. In this study, naked or modified MnFe2O4 magnetic nanoparticles (MNPs) were used as supports for the immobilization of laccase from Trametes versicolor. To increase enzyme loading and stability, MNPs were coated with chitosan both after the MNP synthesis (MNPs-CS) and during their formation (MNPs-CSin situ). SEM analysis showed different sizes for the two coated systems, 20 nm and 10 nm for MNPs-CS and MNPs-CSin situ, respectively. After covalent immobilization of laccase by glutaraldehyde, the MNPs-CSin situ-lac and MNPs-CS-lac systems showed a good resistance to temperature denaturation and storage stability. The most promising system for use in repeated batches was MNPs-CSin situ-lac, which degraded about 80% of diclofenac compared to 70% of the free enzyme. The obtained results demonstrated that the MnFe2O4-CSin situ system could be an excellent candidate for the removal of contaminants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available