4.8 Article

Simultaneous readout of multiple FRET pairs using photochromism

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-021-22043-0

Keywords

-

Funding

  1. Research Foundation Flanders (FWO)
  2. FWO
  3. Research Foundation Flanders [G090819N, G0B8817N]
  4. European Research Council [714688]
  5. KU Leuven [C14/17/111]
  6. National Institutes of Health [NIH R01 DK073368]

Ask authors/readers for more resources

The authors present a method to discriminate between overlapping FRET pairs based on the photochromism of donor fluorophores, even if the fluorophores display almost identical absorption and emission spectra, providing a new approach for simultaneously measuring multiple associations.
Forster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells. Performing multiple FRET measurements at once can be challenging. Here the authors report a method to discriminate between overlapping FRET pairs, even if the fluorophores display almost identical absorption and emission spectra, based on the photochromism of the donor fluorophores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available