4.5 Article

Blocking transient receptor potential vanilloid 2 channel in astrocytes enhances astrocyte-mediated neuroprotection after oxygen-glucose deprivation and reoxygenation

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 44, Issue 7, Pages 2493-2503

Publisher

WILEY
DOI: 10.1111/ejn.13352

Keywords

intracellular Ca2+; ischemic stroke; nerve growth factor; proliferation

Categories

Funding

  1. National Natural Science Foundation of China [81301126]

Ask authors/readers for more resources

Astrocytes play important roles in homeostatic regulation in the central nervous system and are reported to influence the outcome of ischemic injury. Regulating Ca2+ signaling of astrocytes is a promising strategy for stroke therapy. Herein, we report for the first time that transient receptor potential vanilloid 2 (TRPV2), a Ca2+-permeable channel that is important in osmotic balance regulation, expresses in rat cortical astrocytes by immunofluorescence. Moreover, oxygen-glucose deprivation and reoxygenation (OGD/R) treatment enhanced the expression. The TRPV2 is functional because Ca2+ imaging showed that activating the TRPV2 channel in cultured astrocytes increased intracellular Ca2+ level and the increment of intracellular Ca2+ level expanded when astrocytes were treated with OGD/R. Staining with 5-ethynyl-2-deoxyuridine (EdU) revealed that while blocking the TRPV2, it promoted the proliferation of astrocytes. Additionally, blocking the TRPV2 in astrocytes increased the synthesis of nerve growth factor (NGF) mRNA and the secretion of NGF by real-time PCR and enzyme-linked immunosorbent assay respectively. We further found that the increased secretion of NGF could be reversed by c-JunN-terminalkinase (JNK) inhibitor and blocking the TRPV2 caused the phosphorylation of JNK. These indicated that blocking the TRPV2 induced NGF secretion via the mitogen-activated protein kinase (MAPK)-JNK signaling pathway. As the promoted proliferation of astrocytes and secretion of NGF were reported to have neuroprotective effects in the early stage of stroke, we concluded that targeting the TRPV2 channel in astrocytes might be a potential new therapeutic strategy in ischemic stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available