4.7 Article

Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity

Journal

MOLECULAR PLANT
Volume 14, Issue 4, Pages 588-603

Publisher

CELL PRESS
DOI: 10.1016/j.molp.2021.01.019

Keywords

BSK1; dynamic; spatiotemporal organization; membrane rafts; growth and immunity

Funding

  1. Program of Introducing Talents of Discipline to Universities (111 Project) [B13007]
  2. National Natural Science Foundation of China [32030010, 31530084, 31871424]

Ask authors/readers for more resources

This study provides insight into how the precise control of BSK1 spatiotemporal organization regulates signaling specificity to balance plant growth and immunity.
Growth and immunity are opposing processes that compete for cellular resources, and proper resource allocation is crucial for plant survival. BSK1 plays a key role in the regulation of both growth and immunity by associating with BRI1 and FLS2, respectively. However, it remains unclear how two antagonistic signals co-opt BSK1 to induce signal-specific activation. Here we show that the dynamic spatial reorganization of BSK1 within the plasma membrane underlies the mechanism of signal-specific activation for growth or immunity. Resting BSK1 localizes to membrane rafts as complexes. Unlike BSK1-associated FLS2 and BRI1, flg22 or exogenous brassinosteroid (BR) treatment did not decrease BSK1 levels at the plasma membrane (PM) but rather induced BSK1 multimerization and dissociation from FLS2/BSK1 or BRI1/BSK1, respectively. Moreover, flg22-activated BSK1 translocated from membrane rafts to non-membrane-raft regions, whereas BR-activated BSK1 remained in membrane rafts. When applied together with flg22, BR suppressed various flg22-induced BSK1 activities such as BSK1 dissociation from FLS2/BSK1, BSK1 interaction with MAPKKK5, and BSK translocation together with MAPKKK5. Taken together, this study provides a unique insight into how the precise control of BSK1 spatiotemporal organization regulates the signaling specificity to balance plant growth and immunity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available