4.6 Article

Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer

Journal

MEDICAL PHYSICS
Volume 48, Issue 7, Pages 3691-3701

Publisher

WILEY
DOI: 10.1002/mp.14896

Keywords

delta‐ radiomics; machine learning; MRI; rectal cancer; treatment response

Funding

  1. Alborz University of Medical Science
  2. Swiss National Science Foundation [SNSF 320030_176052]

Ask authors/readers for more resources

The study evaluated the feasibility of using MRI radiomic features for treatment response prediction in LARC patients undergoing nCRT, and found that delta-radiomics performed well in predicting treatment response.
Objectives We evaluate the feasibility of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for locally advanced rectal cancer (LARC) patients treated by neoadjuvant chemoradiation therapy (nCRT). Materials and Methods This retrospective study included 53 LARC patients divided into a training set (Center#1, n = 36) and external validation set (Center#2, n = 17). T2-weighted (T2W) MRI was acquired for all patients, 2 weeks before and 4 weeks after nCRT. Ninety-six radiomic features, including intensity, morphological and second- and high-order texture features were extracted from segmented 3D volumes from T2W MRI. All features were harmonized using ComBat algorithm. Max-Relevance-Min-Redundancy (MRMR) algorithm was used as feature selector and k-nearest neighbors (KNN), Naive Bayes (NB), Random forests (RF), and eXtreme Gradient Boosting (XGB) algorithms were used as classifiers. The evaluation was performed using the area under the receiver operator characteristic (ROC) curve (AUC), sensitivity, specificity and accuracy. Results In univariate analysis, the highest AUC in pre-, post-, and delta-radiomic features were 0.78, 0.70, and 0.71, for GLCM_IMC1, shape (surface area and volume) and GLSZM_GLNU features, respectively. In multivariate analysis, RF and KNN achieved the highest AUC (0.85 +/- 0.04 and 0.81 +/- 0.14, respectively) among pre- and post-treatment features. The highest AUC was achieved for the delta-radiomic-based RF model (0.96 +/- 0.01) followed by NB (0.96 +/- 0.04). Overall. Delta-radiomics model, outperformed both pre- and post-treatment features (P-value <0.05). Conclusion Multivariate analysis of delta-radiomic T2W MRI features using machine learning algorithms could potentially be used for response prediction in LARC patients undergoing nCRT. We also observed that multivariate analysis of delta-radiomic features using RF classifiers can be used as powerful biomarkers for response prediction in LARC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available