4.6 Article

Phenotyping coronavirus disease 2019 during a global health pandemic: Lessons learned from the characterization of an early cohort

Journal

JOURNAL OF BIOMEDICAL INFORMATICS
Volume 117, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jbi.2021.103777

Keywords

Data management; Phenotype; Phenomics; Controlled terminologies and vocabularies

Funding

  1. Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation from NIH/NIGMS [2 R01 LM010685-09, U01 HG011166-01S1]

Ask authors/readers for more resources

This study utilized a COVID-19 registry and EHR data to assess population-level characteristics in pandemic and non-pandemic years, revealing that EHR length and data density impact phenotype performance of nine common comorbidities.
From the start of the coronavirus disease 2019 (COVID-19) pandemic, researchers have looked to electronic health record (EHR) data as a way to study possible risk factors and outcomes. To ensure the validity and accuracy of research using these data, investigators need to be confident that the phenotypes they construct are reliable and accurate, reflecting the healthcare settings from which they are ascertained. We developed a COVID19 registry at a single academic medical center and used data from March 1 to June 5, 2020 to assess differences in population-level characteristics in pandemic and non-pandemic years respectively. Median EHR length, previously shown to impact phenotype performance in type 2 diabetes, was significantly shorter in the SARS-CoV-2 positive group relative to a 2019 influenza tested group (median 3.1 years vs 8.7; Wilcoxon rank sum P = 1.3e52). Using three phenotyping methods of increasing complexity (billing codes alone and domain-specific algorithms provided by an EHR vendor and clinical experts), common medical comorbidities were abstracted from COVID-19 EHRs, defined by the presence of a positive laboratory test (positive predictive value 100%, recall 93%). After combining performance data across phenotyping methods, we observed significantly lower false negative rates for those records billed for a comprehensive care visit (p = 4e-11) and those with complete demographics data recorded (p = 7e-5). In an early COVID-19 cohort, we found that phenotyping performance of nine common comorbidities was influenced by median EHR length, consistent with previous studies, as well as by data density, which can be measured using portable metrics including CPT codes. Here we present those challenges and potential solutions to creating deeply phenotyped, acute COVID-19 cohorts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available