4.6 Article

The use of radar and optical satellite imagery combined with advanced machine learning and metaheuristic optimization techniques to detect and quantify above ground biomass of intertidal seagrass in a New Zealand estuary

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 42, Issue 12, Pages 4716-4742

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2021.1899335

Keywords

-

Ask authors/readers for more resources

This study develops a novel method for binary mapping of seagrass distribution and estimating seagrass above-ground biomass using advanced machine learning algorithms and remote sensing data, with potential applications in seagrass conservation and management worldwide.
Seagrass provides numerous valuable ecosystem services across a wide range of climatic regions. However, in terms of area and habitat, this resource is in decline globally and there is an urgent need for accurate mapping of extant meadows and biomass to support sustainable seagrass blue carbon conservation and management. This study develops a novel method for a binary mapping of seagrass distribution and estimating seagrass above-ground biomass (AGB) by applying a suite of advanced machine learning (ML) algorithms combined with and without a metaheuristic optimization approach (particle swarm optimization - PSO) to various combinations of multispectral (Sentinel-2) and synthetic aperture radar (Sentinel-1) remote sensing data. Our results reveal that the Sentinel-1 data has potential for the binary mapping of seagrass meadows using an extreme gradient boosting (XGB) model (scores of precision (P) = 0.82, recall (R) = 0.90, and F (1) = 0.86) but is less effective at estimating AGB. The optimal method for estimation of AGB used both Sentinel-1 and Sentinel-2 imagery, the XGB model, and PSO optimization (coefficient of determination (R (2)) = 0.75, root mean squared error (RMSE) = 0.35, Akaike information criteria (AIC) = 24.80, Bayesian information criteria (BIC) = 44.70). Our findings contribute novel and advanced methods for seagrass detection and improvement of AGB estimation, which are fast and reliable, use open-source data and software and should be easily applicable to intertidal zones across many regions of the world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available