4.5 Article

Alpha-synuclein is associated with the synaptic vesicle apparatus in the human and rat enteric nervous system

Journal

BRAIN RESEARCH
Volume 1614, Issue -, Pages 51-59

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2015.04.015

Keywords

Alpha synuclein; Enteric nervous system; Enteric nerve cell culture; Human colon; Synaptic vesicles

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [WE 2366/4-2]

Ask authors/readers for more resources

Background and aims: Aggregation of alpha-synuclein (a-syn) has been implicated in the development of neurodegenerative diseases including its spread from the enteric nervous system (ENS) to the brain. Physiologically, a-syn is located at the presynapse and might be involved in regulating of neurotransmission. Therefore, the aim of the study was to characterize the physiological ontogenetic and locoregional expression pattern of a-syn in the ENS and its association with the synaptic vesicle apparatus. Material and methods: Ontogenetic mRNA expression of a-syn and synaptophysin was determined in the rat intestine. Myenteric plexus cultures treated with glial cell line-derived neurotrophic factor (GDNF) were assessed for mRNA expression of a-syn, co-localization of a-syn with the pan-neuronal marker PGP 9.5 and the synaptic vesicle marker synaptophysin and studied by scanning electron microscopy (SEM). Human colonic specimens were subjected to co-localization studies of a-syn with synaptophysin. Results: a-syn and synaptophysin intestinal gene expression levels were highest during early postnatal life and also detectable at adult age. a-syn was co-localized with PGP 9.5 and synaptophysin in myenteric plexus cultures and up-regulated after GDNF treatment. SEM confirmed the presence of neuronal varicosities to which a-syn was associated. Consistently, a-syn and synaptophysin showed partial co-localization in the human ENS. Conclusions: The ontogenetic and cellular expression pattern as well as the regulation by GNDF give evidence that a-syn is physiologically associated to the synaptic vesicle apparatus. The data suggest that a-syn is involved in the regulation of synaptic plasticity in the ENS during early postnatal life and adult age. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available