4.5 Article

Comparative Study on Chemical Kinetics Mechanisms for Methane-Based Fuel Mixtures under Engine-Relevant Conditions

Journal

ENERGIES
Volume 14, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/en14102834

Keywords

ignition delay time; laminar flame speed; natural gas; engine-relevant condition; mechanisms

Categories

Ask authors/readers for more resources

This study compares various chemical kinetics mechanisms for gaseous fuel blends under engine-relevant conditions, focusing on methane-based fuel blends. The research shows that GRI-3.0 and 290Rxn mechanisms have high compatibility with ignition delay times and laminar flame speed under high pressures and lean conditions, making them suitable for SI engine combustion simulations due to their lower computational cost. The results contribute significantly to the simulation of methane-based fuel blends combustion in SI engines.
The use of natural gas in pure or in a blended form with hydrogen and syngas in spark ignition (SI) engines has received much attention in recent years. They have higher diffusion coefficient and laminar flame speed, a small quenching distance and wider flammability limit which compensate the demerits of the lean-burn natural gas combustion. Therefore, a careful examination of the chemical kinetics of combustion of gaseous fuel blends is of great importance. In this paper, performance of the various chemical kinetics mechanisms is compared against experimental data, accumulated for methane-based fuel blends under engine-relevant conditions to find the most appropriate mechanism in engine simulations. Pure methane, methane/syngas, and methane/propane blends are mainly studied at various temperatures, pressures, and equivalence ratios. The ignition delay time and laminar flame speed are used as quantitative metrics to compare the simulation results with the data from experiments. The mechanisms were shown to be mainly consistent with the experimental data of lean and stoichiometric mixtures at high pressures. It was also shown that the GRI-3.0 and 290Rxn mechanisms have high compatibility with the ignition delay times and laminar flame speed at high pressures and lean conditions, and they can be utilized for simulations of SI engine combustion due to their lower computational cost. The results of present research provide an important contribution to the methane-based fuel blends combustion simulation under SI engine-relevant conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available