4.6 Article

Twisted monolayer and bilayer graphene for vertical tunneling transistors

Journal

APPLIED PHYSICS LETTERS
Volume 118, Issue 18, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0048191

Keywords

-

Funding

  1. EU [CNECTICT-604391]
  2. European Research Council Synergy Grant Hetero2D
  3. Royal Society
  4. EPSRC [EP/N010345/1, EP/P026850/1, EP/S030719/1]
  5. Russian Science Foundation [17-12-01393]
  6. EPSRC [EP/P026850/1, EP/N010345/1, EP/S030719/1] Funding Source: UKRI
  7. Russian Science Foundation [20-12-18028] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

This study demonstrates twist-controlled resonant tunneling transistors by aligning the crystallographic orientation of graphene electrodes, achieving resonant conditions and negative differential conductance. Application of an in-plane magnetic field allows control over the resonant conditions by providing electrons with additional momentum during the tunneling process.
We prepare twist-controlled resonant tunneling transistors consisting of monolayer and Bernal bilayer graphene electrodes separated by a thin layer of hexagonal boron nitride. The resonant conditions are achieved by closely aligning the crystallographic orientation of graphene electrodes, which leads to momentum conservation for tunneling electrons at certain bias voltages. Under such conditions, negative differential conductance can be achieved. Application of in-plane magnetic field leads to electrons acquiring additional momentum during the tunneling process, which allows control over the resonant conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Electrical Interrogation of Thickness-Dependent Multiferroic Phase Transitions in the 2D Antiferromagnetic Semiconductor NiI2

Dmitry Lebedev, Jonathan Tyler Gish, Ethan Skyler Garvey, Teodor Kosev Stanev, Junhwan Choi, Leonidas Georgopoulos, Thomas Wei Song, Hong Youl Park, Kenji Watanabe, Takashi Taniguchi, Nathaniel Patrick Stern, Vinod Kumar Sangwan, Mark Christopher Hersam

Summary: 2D magnetic materials have promising applications in quantum and spintronic devices. 2D antiferromagnetic materials are of interest due to their insensitivity to external magnetic fields and faster switching speeds compared to 2D ferromagnets. However, their lack of macroscopic magnetization hampers the detection and control of antiferromagnetic order, emphasizing the need for magneto-electrical measurements.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Physics, Pohang 37673, Republic of Korea;

Dohun Kim, Byungmin Kang, Yong-Bin Choi, Kenji Watanabe, Takashi Taniguchi, Gil-Ho Lee, Gil Young Cho, Youngwook Kim

Summary: We introduce a novel two-dimensional electronic system called twisted bilayer graphene with a large twist angle, which exhibits ultrastrong interlayer interactions and is ideal for realizing interlayer-coherent excitonic condensates. By fully exploiting the sub-nanometer atomic separation and geometrically suppressed interlayer electron tunneling, we demonstrate the appearance of a sequence of odd-integer quantum Hall states with interlayer coherence at the second Landau level (N = 1). These states have energy gaps of order 1 K, several orders of magnitude greater than those in GaAs. Experimental observations of various quantum Hall phase transitions largely support our phenomenological model calculations. Therefore, we establish the excellent platform of a large twist angle system for high-temperature excitonic condensation.

NANO LETTERS (2023)

Article Nanoscience & Nanotechnology

p-Type Conversion of WS2 and WSe2 by Position-Selective Oxidation Doping and Its Application in Top Gate Transistors

Ryoichi Kato, Haruki Uchiyama, Tomonori Nishimura, Keiji Ueno, Takashi Taniguchi, Kenji Watanabe, Edward Chen, Kosuke Nagashio

Summary: In this study, high-performance p-type FETs were achieved by selectively applying surface charge-transfer doping from WOx to the access region of WS2 and WSe2. The p-type conversion of intrinsically n-type trilayer WSe2 FET was successfully achieved by reducing the Schottky barrier width and injecting holes into the valence band. However, trilayer WS2 did not show clear p-type conversion due to its lower valence band maximum compared to trilayer WSe2. Using h-BN as a TG insulator, a high-performance p-type WSe2 FET with negligible hysteresis was achieved.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Physics, Applied

Magnetic field imaging by hBN quantum sensor nanoarray

Kento Sasaki, Yuki Nakamura, Hao Gu, Moeta Tsukamoto, Shu Nakaharai, Takuya Iwasaki, Kenji Watanabe, Takashi Taniguchi, Shinichi Ogawa, Yukinori Morita, Kensuke Kobayashi

Summary: Placing a sensor close to the target at the nano-level is a central challenge in quantum sensing. We demonstrate magnetic field imaging with a boron vacancy (V-B(-)) defects array in hexagonal boron nitride with a few 10 nm thickness. The sensor array allows us to visualize the magnetic field induced by the current in the straight micro wire with a high spatial resolution. Each sensor exhibits a practical sensitivity of 73.6 mu T/Hz(0.5), suitable for quantum materials research. Our technique of arranging V-B(-) quantum sensors periodically and tightly on measurement targets will maximize their potential.

APPLIED PHYSICS LETTERS (2023)

Article Chemistry, Multidisciplinary

Giant and Tunable Excitonic Optical Anisotropy in Single-Crystal Halide Perovskites

Georgy Ermolaev, Anatoly P. Pushkarev, Alexey Zhizhchenko, Aleksandr A. Kuchmizhak, Ivan Iorsh, Ivan Kruglov, Arslan Mazitov, Arthur Ishteev, Kamilla Konstantinova, Danila Saranin, Aleksandr Slavich, Dusan Stosic, Elena S. Zhukova, Gleb Tselikov, Aldo Di Carlo, Aleksey Arsenin, Kostya S. Novoselov, Sergey Makarov, Valentyn S. Volkov

Summary: In recent years, the significance of giant optical anisotropy in light manipulation has been demonstrated. However, achieving continuous tunability of optical anisotropy has remained a challenge. This study presents a solution to this problem through the chemical alteration of halogen atoms in single-crystal halide perovskites, resulting in the continuous modification of optical anisotropy. Our findings also show that halide perovskites can exhibit high optical anisotropy up to 0.6 in the visible range, the highest value among non-van der Waals materials.

NANO LETTERS (2023)

Article Chemistry, Multidisciplinary

Current-Phase Relation of a WTe2 Josephson Junction

Martin Endres, Artem Kononov, Hasitha Suriya Arachchige, Jiaqiang Yan, David Mandrus, Kenji Watanabe, Takashi Taniguchi, Christian Schoenenberger

Summary: In this study, we measured a 4N-periodic switching current through an asymmetric SQUID formed by the higher-order topological insulator WTe2. We found that a high asymmetry in critical current and negligible loop inductance alone were not sufficient to reliably measure the current-phase relation. Instead, we discovered that our measurement was heavily influenced by additional inductances originating from the self-formed PdTex inside the junction. We developed a method to numerically recover the current-phase relation and found that the 1.5 μm long junction was best described in the short ballistic limit. Our results highlight the complexity of subtle inductance effects that can lead to misleading topological signatures in transport measurements.

NANO LETTERS (2023)

Article Multidisciplinary Sciences

Gate-tunable heavy fermions in a moire Kondo lattice

Wenjin Zhao, Bowen Shen, Zui Tao, Zhongdong Han, Kaifei Kang, Kenji Watanabe, Takashi Taniguchi, Kin Fai Mak, Jie Shan

Summary: Scientists have realized synthetic Kondo lattice in AB-stacked MoTe2/WSe2 moire bilayers, observing heavy fermions and demonstrating gate-tunable Kondo temperatures. This study opens the possibility of accessing the phase diagram of the Kondo lattice using semiconductor moire materials.

NATURE (2023)

Article Nanoscience & Nanotechnology

Switchable moire potentials in ferroelectric WTe2/WSe2 superlattices

Kaifei Kang, Wenjin Zhao, Yihang Zeng, Kenji Watanabe, Takashi Taniguchi, Jie Shan, Kin Fai Mak

Summary: We have achieved the pulsed control of the superlattice effect in two-dimensional materials through the ferroelectric effect, switching between the correlated and superlattice insulating states, and observing the nonlinear anomalous Hall effect. This study demonstrates the potential for creating new functional superlattice materials by incorporating intrinsic symmetry-breaking orders.

NATURE NANOTECHNOLOGY (2023)

Article Multidisciplinary Sciences

Correlated insulator of excitons in WSe2/WS2 moire superlattices

Richen Xiong, Jacob H. Nie, Samuel L. Brantly, Patrick Hays, Renee Sailus, Kenji Watanabe, Takashi Taniguchi, Sefaattin Tongay, Chenhao Jin

Summary: We observe a bosonic correlated insulator composed of excitons in tungsten diselenide/tungsten disulfide (WSe2/WS2) moire superlattices. The insulator transitions continuously into an electron correlated insulator with varying charge density, suggesting a mixed correlated insulating state between the two limits.

SCIENCE (2023)

Article Chemistry, Multidisciplinary

Cascaded Logic Gates Based on High-Performance Ambipolar Dual-Gate WSe2 Thin Film Transistors

Xintong Li, Peng Zhou, Xuan Hu, Ethan Rivers, Kenji Watanabe, Takashi Taniguchi, Deji Akinwande, Joseph S. Friedman, Jean Anne C. Incorvia

Summary: Ambipolar dual-gate transistors based on low-dimensional materials enable reconfigurable logic circuits with suppressed off-state current. This article presents high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2), which exhibit high on-off ratio, low off-state current, negligible hysteresis, and ideal subthreshold swing. Cascadable logic gates with minimal static power consumption are demonstrated using these transistors. The study also investigates the behavior of both control gate and polarity gate and analyzes the noise margin and speed performance of the circuits built by dual-gate devices. This work advances the field of ambipolar dual-gate transistors and showcases their potential for low-power, high-speed, and more flexible logic circuits.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Phonon-Mediated Quasiparticle Lifetime Renormalizations in Few-Layer Hexagonal Boron Nitride

Hakon Rost, Simon P. Cooil, Anna Cecilie Asland, Jinbang Hu, Ayaz Ali, Takashi Taniguchi, Kenji Watanabe, Branson D. Belle, Bodil Holst, Jerzy T. Sadowski, Federico Mazzola, Justin W. Wells

Summary: Understanding the collective behavior of quasiparticles in solid-state systems is crucial for nonvolatile electronics, allowing control of many-body effects and their applications. Hexagonal boron nitride (hBN) is a wide-energy-bandgap semiconductor with potential for low-dimensional device heterostructures. Despite its inertness, few-layer hBN shows a significant increase in electron mass, affecting the lifetime of pi-band states. The enhancement is phonon-mediated and has important implications for hBN-based devices.

NANO LETTERS (2023)

Article Chemistry, Physical

Exciton-assisted electron tunnelling in van der Waals heterostructures

Lujun Wang, Sotirios Papadopoulos, Fadil Iyikanat, Jian Zhang, Jing Huang, Takashi Taniguchi, Kenji Watanabe, Michel Calame, Mickael L. Perrin, F. Javier Garcia de Abajo, Lukas Novotny

Summary: The authors demonstrate exciton-assisted resonant electron tunnelling in van der Waals heterostructure tunnel junctions. They reveal tunnelling mechanisms involving indirect or direct excitons and optical emission driven by inelastic electron tunnelling. The study highlights the importance of materials with well-defined interfaces and the potential for van der Waals material-based optoelectronic devices.

NATURE MATERIALS (2023)

Article Multidisciplinary Sciences

Interplay of valley polarized dark trion and dark exciton-polaron in monolayer WSe2

Xin Cong, Parisa Ali Mohammadi, Mingyang Zheng, Kenji Watanabe, Takashi Taniguchi, Daniel Rhodes, Xiao-Xiao Zhang

Summary: The study investigates the characteristics of Fermi sea screening on dark excitons in monolayer WSe2 and its correlation with carrier density. The results indicate that the photoluminescence of dark excitons shows distinct p-doping dependence when the carrier density reaches a critical level.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Measurement of the conduction band spin-orbit splitting in WSe2 and WS2 monolayers

Lei Ren, Cedric Robert, Hanan Dery, Minhao He, Pengke Li, Dinh Van Tuan, Pierre Renucci, Delphine Lagarde, Takashi Taniguchi, Kenji Watanabe, Xiaodong Xu, Xavier Marie

Summary: We investigated charge tunable devices based on WSe2 and WS2 monolayers encapsulated in hexagonal boron nitride. We observed a weaker-intensity optical transition in photoluminescence measurements when the monolayers were electrostatically doped with electrons. Through a detailed characterization of this photoluminescence line, we identified it as an impurity-assisted radiative recombination of the intervalley negatively charged exciton (triplet trion). Our measurements also revealed the spin-orbit splitting energy difference between the emitted photons from the two possible recombination processes of the same triplet trion.

PHYSICAL REVIEW B (2023)

Article Chemistry, Multidisciplinary

Self-Aligned Top-Gate Structure in High-Performance 2D p-FETs via van der Waals Integration and Contact Spacer Doping

Tien Dat Ngo, Tuyen Huynh, Inyong Moon, Takashi Taniguchi, Kenji Watanabe, Min Sup Choi, Won Jong Yoo

Summary: This study presents a novel approach to overcome the challenges faced by 2D materials in CMOS technology, specifically in the production of high-performance p-type field effect transistors (p-FETs). By fabricating lateral p+-p-p+ junction WSe2 FETs with self-aligned TG stacks and utilizing selective oxygen plasma-doping, the researchers achieve exceptional electrostatic controllability and low power consumption in PMOS inverters.

NANO LETTERS (2023)

No Data Available