4.7 Article

Environmental characterisation of sewage sludge/paper ash-based composites in relation to their possible use in civil engineering

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 24, Issue 1, Pages 1030-1041

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-016-7843-2

Keywords

Sewage sludge; Paper fly ash; Construction product; Environmental acceptability; Potentially toxic elements; Cu immobilisation

Funding

  1. Ministry of Higher Education, Science, and Technology of the Republic of Slovenia [P1-0008, P2-0273]

Ask authors/readers for more resources

The environmental acceptability of geotechnical composites made of treated municipal sewage sludge (SwS) and paper ash (PA) after two different curing periods has been investigated. The mineral composition of such composites, including their content of major oxides, is mainly influenced by the PA. The content of potentially toxic elements (PTEs) in the initial materials and in the composites varies considerably. In the SwS the Ba, Cd, Cr, Cu, Hg, Ni and Zn contents are above the legally permitted limits. The PTE content of PA are lower, but still somewhat above the permitted values for Ba and Cu. Mixing these two materials together resulted in a decrease in the PTE, but the Ba, Cu and Zn contents are still too high for agricultural application. However, leachates from composites that had been cured for 28 days are highly alkaline, and the As, Ba, Cd, Cr, Hg, Mo, Ni, Pb and Zn contents in them are well below the permitted values. The Cu contents (2.4 to 5.4 mg/kg) are above the permitted limit for inert material, but inside the range for non-hazardous material. In a leachate of composite which was prepared with fresh PA and a lower PA to SwS ratio, the Cu content was 1.4 mg/kg, since fresh PA is more reactive and therefore has a higher ability to immobilise Cu. Therefore, such mixtures can be utilised for covers and liners for sanitary landfills.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available