4.8 Article

Catalyst-Free Growth of Atomically Thin Bi2O2Se Nanoribbons for High-Performance Electronics and Optoelectronics

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 31, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202101170

Keywords

Bi; O-2; Se-2; catalyst‐ free growth; chemical vapor deposition; field‐ effect transistor; monolayer nanoribbons; photodetectors

Funding

  1. National Natural Science Foundation of China [51991340, 51920105002, 51991343, 51950410577]
  2. Guangdong Innovative and Entrepreneurial Research Team Program [2017ZT07C341]
  3. Bureau of Industry and Information Technology of Shenzhen [201901171523]
  4. Shenzhen Basic Research Project [JCYJ20200109144620815, JCYJ20190809180605522, JCYJ20200109144616617]

Ask authors/readers for more resources

A catalyst-free growth method for Bi2O2Se nanoribbons with tunable dimensionality was developed in this study, leading to the successful growth of nanoribbons with a thickness down to a monolayer. The electrical and optoelectronic measurements showed decent performance of the nanoribbons, suggesting their promise for devices.
1D materials have attracted significant research interest due to their unique quantum confinement effects and edge-related properties. Atomically thin 1D nanoribbons are particularly interesting because it is a valuable platform with the physical limits of both thickness and width. Here, a catalyst-free growth method is developed and the growth of Bi2O2Se nanostructures with tunable dimensionality is achieved. Significantly, Bi2O2Se nanoribbons with a thickness down to 0.65 nm, corresponding to a monolayer, are successfully grown for the first time. Electrical and optoelectronic measurements show that Bi2O2Se nanoribbons possess decent performance in terms of mobility, on/off ratio, and photoresponsivity, suggesting their promise for devices. This work not only reports a new method for the growth of atomically thin nanoribbons but also provides a platform to study properties and applications of such nanoribbon materials at a thickness limit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available