4.8 Article

Correlating Crystallographic Orientation and Ferroic Properties of Twin Domains in Metal Halide Perovskites

Journal

ACS NANO
Volume 15, Issue 4, Pages 7139-7148

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c00310

Keywords

metal halide perovskites; piezoresponse force microscopy; ferroelectricity; piezoelectricity; electron backscatter diffraction; crystallographic orientation

Funding

  1. Polish National Agency for Academic Exchange (NAWA) [PPN/ULM/2019/1/00068/U/00001]

Ask authors/readers for more resources

Metal halide perovskite (MHP) solar cells have gained global attention in research. Understanding the crystal orientation and ferroic properties of MHP twin stripes is essential to comprehend the impact of ferroic behavior on the optoelectronic properties. Investigating these aspects provides insight into the influence of subgrain structures in MHPs.
Metal halide perovskite (MHP) solar cells have attracted worldwide research interest. Although it has been well established that grain, grain boundary, and grain facet affect MHPs optoelectronic properties, less is known about subgrain structures. Recently, MHP twin stripes, a subgrain feature, have stimulated extensive discussion due to the potential for both beneficial and detrimental effects of ferroelectricity on optoelectronic properties. Connecting the ferroic behavior of twin stripes in MHPs with crystal orientation will be a vital step to understand the ferroic nature and the effects of twin stripes. In this work, we studied the crystallographic orientation and ferroic properties of CH3NH3PbI3 twin stripes, using electron backscatter diffraction (EBSD) and advanced piezoresponse force microscopy (PFM), respectively. Using EBSD, we discovered that the orientation relationship across the twin walls in CH3NH3PbI3 is a 90 degrees rotation about <(11) over tilde0 >, with the < 030 > and < 111 >. directions parallel to the direction normal to the surface. By careful inspection of CH3NH3PbI3 PFM results including in-plane and out-of-plane PFM measurements, we demonstrate some nonferroelectric contributions to the PFM responses of this CH3NH3PbI3 sample, suggesting that the PFM signal in this CH3NH3PbI3 sample is affected by nonferroelectric and nonpiezoelectric forces. If there is piezoelectric response, it is below the detection sensitivity of our interferometric displacement sensor PFM (<0.615 pm/V). Overall, this work offers an integrated picture describing the crystallographic orientations and the origin of PFM signal of MHPs twin stripes, which is critical to understanding the ferroicity in MHPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available