4.6 Article

Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4

Journal

BIOLOGY-BASEL
Volume 10, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/biology10020100

Keywords

mycovirus; reovirus; hypovirus; Cryphonectria parasitica; co-infection; RNA silencing; RNAi suppressor; chestnut blight fungus; Dicer

Categories

Funding

  1. [CHV1-EP713]

Ask authors/readers for more resources

The study focuses on the impact of hypoviruses on host antiviral RNA silencing, and reveals the mechanism of action of CHV4 p24 as an RNA silencing suppressor.
Simple Summary Host antiviral defense/viral counter-defense is an interesting topic in modern virology. RNA silencing is the primary antiviral mechanism in insects, plants, and fungi, while viruses encode and utilize RNA silencing suppressors against the host defense. Hypoviruses are positive-sense single-stranded RNA viruses with phylogenetic affinity to the picorna-like supergroup, including animal poliovirus and plant potyvirus. The prototype hypovirus Cryphonectria hypovirus 1, CHV1, is one of the best-studied fungal viruses. It is known to induce hypovirulence in the chestnut blight fungus, Cryphonectria parasitica, and encode an RNA silencing suppressor. CHV4 is another hypovirus asymptomatically that infects the same host fungus. This study shows that the N-terminal portion of the CHV4 polyprotein, termed p24, is a protease that autocatalytically cleaves itself from the rest of the viral polyprotein, and functions as an antiviral RNA silencing suppressor. Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)-likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available