4.7 Article

Effect of Varying Wind Intensity, Forward Speed, and Surface Pressure on Storm Surges of Hurricane Rita

Journal

Publisher

MDPI
DOI: 10.3390/jmse9020128

Keywords

storm surge hindcast; wind intensity; forward speed; surface pressure and wide and gentle sloping continental shelf

Funding

  1. National Science Foundation-Excellence in Research [2000283]
  2. Directorate For Geosciences
  3. Division Of Ocean Sciences [2000283] Funding Source: National Science Foundation

Ask authors/readers for more resources

Hurricane storm surges are influenced by various factors, with wind intensity, surface pressure, and forward speed having the greatest impact. The combined effects of wind intensity and forward speed are noticeably different from their individual effects.
Hurricane storm surges are influenced by several factors, including wind intensity, surface pressure, forward speed, size, angle of approach, ocean bottom depth and slope, shape and geographical features of the coastline. The relative influence of each factor may be amplified or abated by other factors that are acting at the time of the hurricane's approach to the land. To understand the individual and combined influence of wind intensity, surface pressure and forward speed, a numerical experiment is conducted using Advanced CIRCulation + Simulating Waves Nearshore (ADCIRC + SWAN) by performing hindcasts of Hurricane Rita storm surges. The wind field generated by Ocean Weather Inc. (OWI) is used as the base meteorological forcing in ADCIRC + SWAN. All parameters are varied by certain percentages from those in the OWI wind field. Simulation results are analyzed for maximum wind intensity, wind vector pattern, minimum surface pressure, forward speed, maximum water elevation, station water elevation time series, and high water marks. The results for different cases are compared against each other, as well as with observed data. Changes in the wind intensity have the greatest impact, followed by the forward speed and surface pressure. The combined effects of the wind intensity and forward speed are noticeably different than their individual effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available