4.8 Article

Copper Uptake, Intracellular Localization, and Speciation in Marine Microalgae Measured by Synchrotron Radiation X-ray Fluorescence and Absorption Microspectroscopy

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 50, Issue 16, Pages 8827-8839

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b00861

Keywords

-

Funding

  1. Australian Synchrotron Research Program [ASRP-644]
  2. U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]

Ask authors/readers for more resources

Metal toxicity to aquatic organisms depends on the speciatiOn of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular- nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES): The marine microalgae, Ceratoneis closterium, Phaeodactylum, tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8-47 mu g Cu/L). Intracellular Cu in control cells was similar for all three species (2.5-3.2 X 10(-15) g Cu/cell) and increased 4fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged- in P. tricornutum (72-h exposure to 19, 40, and 40 mu g Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated- with organelles/granules dense in F, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. This study supports the hypothesis that Cu(II) is. reduced to- Cu(I) and that polyphoSphate bodies and phytOchelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available