4.7 Article

Exceptional antibacterial and cytotoxic potency of monodisperse greener AgNPs prepared under optimized pH and temperature

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-82555-z

Keywords

-

Funding

  1. Higher Education Commission, Pakistan
  2. Shastri Indo-Canadian Institute (SICI)

Ask authors/readers for more resources

In this study, silver nanoparticles were successfully prepared using the extract of Camellia Sinensis, with a focus on investigating the influence of pH and temperature on the synthesis process. The prepared nanoparticles exhibited significant antibacterial and cytotoxic activities, showing a close relationship between activity and concentration.
In the present work, silver nanoparticles were prepared by using the extract of Camellia Sinensis. The extract contains phytochemicals which are mainly polyphenols acting as the natural reducing and stabilizing agents leading to the formation of uniformly dispersed and stabilized silver nanoparticles. The synthesis of silver nanoparticles was significantly influenced by the impact of the pH, as well as temperature conditions. It was found that at pH 5 and 25 degrees C, nanoparticles of different morphologies (spherical, polygonal, capsule) and sizes were formed. However, with the increase in temperature from 25 degrees C to 65 degrees C but at the same pH, these particles started attaining the spherical shape of different sizes owing to an increase in the reduction rate. Furthermore, for the reaction of the mixture at 65 degrees C, an increase in pH from 5 to 11 led to an increase in the monodispersity of spherically shaped nanoparticles, attributed to the hydroxide ions facilitated reduction. The prepared nanoparticles were investigated for their antibacterial activity using Nathan's Agar Well-Diffusion method. It was found that AgNPs prepared at pH 9 and 65 degrees C demonstrated strong antibacterial activity against gram-negative Escherichia coli in contrast to gram-positive Staphylococcus aureus. In reference to the cytotoxic potency, the prepared AgNPs showed clear cytotoxicity for HeLa cells and showcased a close relationship between activity and concentration as evidenced by the decrease in the percentage (100 to 30%) of metabolically active cells up to 25 mu M-75 mu M concentration of silver nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available