4.8 Article

Transcription activation by a sliding clamp

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-021-21392-0

Keywords

-

Funding

  1. National Natural Science Foundation of China [31970040, 32000025]

Ask authors/readers for more resources

Transcription activation of bacteriophage T4 late genes relies on an activation complex containing RNAP, gp55, gp33, and gp45. Structural studies have revealed the interactions between gp55 and promoter DNA, gp33 and RNAP/DNA, as well as the mechanism by which gp45 tethers RNAP to DNA.
Transcription activation of bacteriophage T4 late genes is accomplished by a transcription activation complex containing RNA polymerase (RNAP), the promoter specificity factor gp55, the coactivator gp33, and a universal component of cellular DNA replication, the sliding clamp gp45. Although genetic and biochemical studies have elucidated many aspects of T4 late gene transcription, no precise structure of the transcription machinery in the process is available. Here, we report the cryo-EM structures of a gp55-dependent RNAP-promoter open complex and an intact gp45-dependent transcription activation complex. The structures reveal the interactions between gp55 and the promoter DNA that mediate the recognition of T4 late promoters. In addition to the sigma R2 homology domain, gp55 has a helix-loop-helix motif that chaperons the template-strand single-stranded DNA of the transcription bubble. Gp33 contacts both RNAP and the upstream double-stranded DNA. Gp45 encircles the DNA and tethers RNAP to it, supporting the idea that gp45 switches the promoter search from three-dimensional diffusion mode to one-dimensional scanning mode. Transcription activation of late genes in T4 bacteriophage requires the promoter specificity factor gp55, the coactivator gp33 and the sliding clamp gp45. Here, the authors provide structural insights into gp45- dependent transcription activation by determining the cryo-EM structures of a gp55-dependent RNA polymerase (RNAP)-promoter open complex and of an intact gp45-dependent transcription activation complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available