4.7 Article

Generating three-dimensional structural topologies via a U-Net convolutional neural network

Journal

THIN-WALLED STRUCTURES
Volume 159, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2020.107263

Keywords

Three dimensions; Topology optimization; Computational efficiency; Variable design domain; Convolutional neural network

Funding

  1. National Key Research and Development Program of China [2018YFB1700703]
  2. National Natural Science Foundation of China [51805411]
  3. Fundamental Research Funds for the Central Universities [xjj2018255]

Ask authors/readers for more resources

This paper proposes a deep learning based neural network for generating three-dimensional structural topologies efficiently. The method involves data set generation, neural network construction and training, and direct attainment of near optimal results with different domain sizes and boundary conditions. Two advantages of this method are highlighted when compared to traditional topology optimization methods and machine learning approaches.
In this paper, we propose a deep learning based neural network to generate three-dimensional structural topologies in an efficient way. The method consists of three steps. First, conventional three dimensional solid isotropic microstructures with penalization (SIMP) method is utilized to generate datasets consisting of various domain sizes and boundary conditions. Second, a deep learning neural network based on U-Net architecture is constructed and trained by the generated datasets. Third, by feeding new cases with different domain sizes and boundary conditions into the network, near optimal results can be directly obtained without any needs of optimization iterations and finite element analysis. Compared with conventional topology optimization methods as well as recent development of machine learning approaches, our proposed method has two advantages: (1) the design boundary conditions are directly mapped with the 3D optimized structures such that no further dependency on the conventional topology optimization algorithm is required once the model is trained, and (2) topology optimization problems with variable design domain sizes can be supported instead of requiring its size to be fixed as the input of the neural network. Experiments demonstrate that once trained, our deep learning based topology optimization method can realize near optimal three dimensional topology prediction using negligible calculation cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Computer Science, Software Engineering

A multi-frame graph matching algorithm for low-bandwidth RGB-D SLAM

Shuai Zheng, Jun Hong, Kang Zhang, Baotong Li, Xin Li

COMPUTER-AIDED DESIGN (2016)

Article Automation & Control Systems

An approach on wheel position and orientation calculation for helical broaching tool sharpening

Kang Jia, Jun Hong, Shuai Zheng, Yinhang Zhang

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2017)

Article Computer Science, Interdisciplinary Applications

Multidisciplinary topology optimization for reduction of sloshing in aircraft fuel tanks based on SPH simulation

Baotong Li, Honglei Liu, Shuai Zheng

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2018)

Article Automation & Control Systems

A surface enveloping-assisted approach on cutting edge calculation and machining process simulation for skiving

Kang Jia, Shuai Zheng, Junkang Guo, Jun Hong

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2019)

Article Computer Science, Software Engineering

Non-iterative structural topology optimization using deep learning

Baotong Li, Congjia Huang, Xin Li, Shuai Zheng, Jun Hong

COMPUTER-AIDED DESIGN (2019)

Article Engineering, Multidisciplinary

A general mathematical model for two-parameter generating machining of involute cylindrical gears

Kang Jia, Junkang Guo, Shuai Zheng, Jun Hong

APPLIED MATHEMATICAL MODELLING (2019)

Article Engineering, Biomedical

Image-level supervised segmentation for human organs with confidence cues

Zhang Chen, Zhiqiang Tian, Yaoyue Zheng, Xiangyu Si, Xulei Qin, Zhong Shi, Shuai Zheng

Summary: This study proposes a weakly supervised method based on prior knowledge for human organ segmentation, which outperforms several state-of-the-art methods in experimental results.

PHYSICS IN MEDICINE AND BIOLOGY (2021)

Article Computer Science, Software Engineering

A Hardware-adaptive Deep Feature Matching Pipeline for Real-time 3D Reconstruction

Shuai Zheng, Yabin Wang, Baotong Li, Xin Li

Summary: This paper introduces a hardware-adaptive feature modeling framework for automatically generating and optimizing deep neural networks to support real-time feature extraction and matching. Experimental results demonstrate the effectiveness of the proposed pipelines on hardware platforms with different performance.

COMPUTER-AIDED DESIGN (2021)

Article Engineering, Civil

Topology optimization of high frequency vibration problems using the EFEM-based approach

Honglei Liu, Ziyu Zhang, Baotong Li, Miaoxia Xie, Jun Hong, Shuai Zheng

Summary: The study establishes a topology optimization framework based on the energy finite element method, focusing on the topological flexibility of structures. Through basic research, an original EFEM-based topology optimization framework for thin-walled structures is established for the first time.

THIN-WALLED STRUCTURES (2021)

Article Engineering, Multidisciplinary

Accurate and real-time structural topology prediction driven by deep learning under moving morphable component-based framework

Shuai Zheng, Haojie Fan, Ziyu Zhang, Zhiqiang Tian, Kang Jia

Summary: This study introduces a real-time structural topology optimization method based on a convolutional neural network, replacing traditional iterative calculations with residual learning and attention mechanisms, significantly improving accuracy.

APPLIED MATHEMATICAL MODELLING (2021)

Article Engineering, Civil

Topology optimization on fuel tank rib structures for fuel sloshing suppression based on hybrid fluid-solid SPH simulation

Shuai Zheng, Fan Gao, Ziyu Zhang, Honglei Liu, Baotong Li

Summary: The paper introduces a topology optimization method for aircraft fuel tank structural design to reduce fuel sloshing effect, using a hybrid fluid-solid particle based simulator and an effective optimizer. The method was validated successfully on a real aircraft wing tank, showing improvements in fuel sloshing time, fuel gauge error, and center of gravity shift.

THIN-WALLED STRUCTURES (2021)

Proceedings Paper Computer Science, Theory & Methods

A Depth-incorporated 2D Descriptor for Robust and Efficient 3D Environment Reconstruction

Kang Zhang, Shuai Zheng, Wuyi Yu, Xin Li

10TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2015) (2015)

Article Engineering, Civil

A semi-analytical method for vibration localization of plates integrated with low-frequency plate-type resonators

Jian Xue, Weiwei Zhang, Jing Wu, Chao Wang, Hongwei Ma

Summary: This study integrates a plate-type local resonator with varying free boundaries within a plate to convert the initial low-order global vibration modes into localized vibration modes. A novel semi-analytical method is proposed to analyze the free vibration of the plate with thickness and displacement discontinuities. The results show that by applying free boundary conditions, the low-order localized vibration frequencies can be significantly reduced without affecting the low-order global frequencies.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Bending behavior of 3D printed sandwich structures with different core geometries and thermal aging durations

Merve Tunay

Summary: In recent years, there has been an increasing number of studies on the mechanical properties of sandwich structures manufactured with the Fused Deposition Modeling (FDM) method. However, there is still a lack of experimental data on the mechanical characteristics of FDM-manufactured sandwich structures under different thermal aging durations. In this experiment, the energy absorption capabilities of sandwich structures with different core geometries were investigated under various thermal aging durations. The results showed that the core topology significantly influenced the energy absorption abilities of the sandwich structures.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Design method of axial compression stability for cross-section corrugated plate steel special-shaped column

Zi-qin Jiang, Zi-yao Niu, Ai-Lin Zhang, Xue-chun Liu

Summary: This paper proposes a crosssection corrugated plate steel special-shaped column (CCSC) that improves the bearing capacity and overall stability of structural columns by using smaller material input. Through theoretical analysis and numerical simulation, the overall stability of the CCSC under axial compression is analyzed. The design method and suggestions for the stability of CCSC are put forward. Compared with conventional square steel tube columns, the CCSC has obvious advantages in overall stability and steel consumption.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Protective performance of hybrid triply periodic minimal surface lattice structure

Yong Zhang, Yangang Chen, Jixiang Li, Jiacheng Wu, Liang Qian, Yuanqiang Tan, Kunyuan Li, Guoyao Zeng

Summary: A hybrid TPMS method was proposed to develop a new TPMS structure, and the mechanical properties of different TPMS structures were studied experimentally and numerically. Results showed that the hybrid TPMS structure had higher energy absorption and lower load-carrying capacity fluctuation. Further investigations revealed that the topological shape and material distribution had significant influence on mechanical properties, and the hybrid additive TPMS structure exhibited significant crashworthiness advantage in in-plane crushing condition.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Experimental and analytical studies on a novel double-stage coupling damper

Tongfei Sun, Ye Liu, Kaoshan Dai, Alfredo Camara, Yujie Lu, Lijie Wang

Summary: This paper presents a series of experimental and numerical studies on the performance of a novel double-stage coupling damper (DSCD). The effects of damper configuration, friction-yield ratio (Rfy), and loading protocol on the hysteresis performance of the DSCD are investigated. The test results demonstrate that the arrangement of ribs in the DSCD increases its energy dissipation capacity. Numerical analysis reveals that the length of the friction mechanism and the clearance between the yield segment and the restraining system affect the energy dissipation and stability of the damper.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Elastic local buckling coefficients of I-shaped beams considering flange-web interaction

Jeonghwa Lee, Young Jong Kang

Summary: This study investigates the local buckling behavior and strength of I-shape structural sections by considering flange-web interactions through three-dimensional finite element analysis. The study provides a more reasonable estimation of local buckling strength by considering the ratio of flange-web slenderness and height-to-width ratio, and presents design equations for flange local and web-bend buckling coefficients.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Improvement of Ni-CFRP interfacial properties using compound coupling agent treatment

Yizhe Chen, Wenfeng Xiang, Qingsong Zhang, Hui Wang, Lin Hua

Summary: This study investigates the surface modification of a nickel plate to improve the bonding strength with carbon fiber-reinforced plastics (CFRP). The results show that different surface modification methods, including sandblasting, coupling agent treatment, and compound coupling agent treatment, significantly enhance the bonding strength of CFRP/Ni joints. The research provides insights into improving the connection between nickel and CFRP, as well as other heterogeneous materials.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

A spatial stability theory of thin-walled steel beams pre-stressed by spatially inclined un-bonded cables and its FE formulation

Agha Intizar Mehdi, Fengping Zhang, Moon-Young Kim

Summary: A spatial stability theory of mono-symmetric thin-walled steel beams pre-stressed by spatially inclined cables is derived and its validity is demonstrated through numerical examples. The effects of initial tension, deviator numbers, inclined cable profiles, and bonded/un-bonded conditions on lateral-torsional buckling of the pre-stressed beams are investigated, with a specific emphasis on the effects of increasing initial tension.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Study on structural response of water-back plate under the combined action of shock wave and bubble loads generated by cylindrical charge in deep-water environment

Teng Ma, Jinxiang Wang, Liangtao Liu, Heng Li, Kui Tang, Yangchen Gu, Yifan Zhang

Summary: The structural response of water-back plate under the combined action of shock wave and bubble loads at water depths of 1-300 m was numerically investigated using an arbitrary Lagrange-Euler method. The accuracy of the numerical model was validated by comparing with experimental and theoretical results. The influences of water depth and length-to-diameter ratio of the charge on the combined damage effect were analyzed. The results show that as water depth increases, the plastic deformation energy of the water-back plate decreases, and the permanent deformation mode changes from convex to concave. When the charge has a large length-to-diameter ratio, the plastic deformation energy of the radial plate is higher than that of the axial plate, and the difference decreases with increasing water depth. Increasing the length-to-diameter ratio enhances the combined damage effect in the radial direction in deep-water environments.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Experimental and numerical investigation on cold-formed steel zed section beams with complex edge stiffeners

Qiu-Yun Li, Ben Young

Summary: This paper investigates the flexural performance of CFS zed section members bent about the neutral axis parallel to the flanges through experimental and numerical analysis. The results show that the current direct strength method generally provides conservative predictions for the flexural strength of unstiffened zed section members, but slightly unconservative design for edge-stiffened zed section beams. The nominal flexural strengths of zed section members with edge stiffeners were found to be underestimated by 17% to 21% on average. Modified DSM formulae are recommended for the design of CFS zed section beams.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

A novel non-contact measurement strategy for large-size inflatable structures based on numerical predictions

Weinan Gao, Bo Song, Xueyan Chen, Guochang Lin, Huifeng Tan

Summary: This paper presents a precise method for predicting deformation in large-scale inflatable structures, utilizing finite element modeling and laser scanning technique. The study shows a good agreement between the predictive model and non-contact measurement results.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Experimental study on Q355 steel T-stubs connected through high-strength ring groove rivets

Fei Gao, Zongyi Wang, Rui Zhu, Zhenming Chen, Quanxi Ye, Yaqi Duan, Yunlong Jia, Qin Zhang

Summary: This research investigates the mechanical properties of high-strength ring groove rivet assemblies and the load resistances of riveted T-stubs. Experimental tests reveal that Grade 10.9 rivets have higher yield strength and strain, and lower ultimate strain, making them suitable for high-strength ring groove rivet connections. Increasing the rivet diameter benefits the T-stubs, while increasing the flange thickness is not always advantageous. The Eurocode 3 method is not suitable for T-stubs connected through ring groove rivets, while the Demonceau method is conservative.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Bending behavior of diamane and twisted bilayer graphene: Insights from four-point bending deformation

Shangchun Jiang, Liangfeng Sun, Haifei Zhan, Zhuoqun Zheng, Xijian Peng, Chaofeng Lue

Summary: This study investigates the bending behavior of two-dimensional nanomaterials, diamane and its analogous structure TBGIB, through atomistic simulations. It reveals that diamane experiences structural failure under bending, while TBGIB bends elastically before undergoing structural failure. The study provides valuable insights for the application of these materials in flexible electronics.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Life-cycle assessment and prediction on ultimate capacity of corroded Q690 steel columns with H-section under bi-directional cyclic loading

Qiang Zhang, Jianian Wen, Qiang Han, Hanqing Zhuge, Yulong Zhou

Summary: In this study, the mechanical properties of Q690 steel H-section columns under bi-directional cyclic loads are investigated, considering the time-varying characteristics of corrosion. A refined finite element (FE) model is built to analyze the degradation of mechanical property and failure mechanisms of steel columns with different design parameters during the whole life-cycle. The study proposes a quantitative calculation method for the ultimate resistance and damage index of steel columns, taking into account the ageing effects. The findings emphasize the importance of considering the ageing effects of steel columns in seismic design.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Magneto-thermo-elastic coupled free vibration and nonlinear frequency analytical solutions of FGM cylindrical shell

Yuda Hu, Qi Zhou, Tao Yang

Summary: The magneto-thermo-elastic coupled free vibration of functionally graded materials cylindrical shell is investigated in this study. The vibration equation in multi-physical field is established and solved using the Hamilton principle and the multi-scale method. The numerical results show that the natural frequency is influenced by various factors such as volume fraction index, initial amplitude, temperature, and magnetic induction intensity.

THIN-WALLED STRUCTURES (2024)