4.6 Article

Experimental Evaluation of the Packet Reception Performance of LoRa

Journal

SENSORS
Volume 21, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/s21041071

Keywords

IoT technology; LoRa; physical layer parameters; packet length; transmission scheme

Funding

  1. Research and Application of Online-Monitoring and Intelligent Emergency Rescue Technology in Hazardous Chemicals Industrial Zone [19DZ1202200]

Ask authors/readers for more resources

LoRa technology is popular for IoT applications, but choosing the right parameter configuration remains a challenge. Research shows that using long packets for transmitting a large amount of data can improve packet reception performance. Finding the optimal combination of physical layer parameters can help achieve a communication transmission scheme with balanced reliability, delay, and energy consumption.
LoRa technology is currently one of the most popular Internet of Things (IoT) technologies. A substantial number of LoRa devices have been applied in a wide variety of real-world scenarios, and developers can adjust the packet reception performance of LoRa through physical layer parameter configuration to meet the requirements. However, since the important details of the relationship between the physical layer parameters and the packet reception performance of LoRa remain unknown, it is a challenge to choose the appropriate parameter configuration to meet the requirements of the scenarios. Moreover, with the increase in application scenarios, the requirements for energy consumption become increasingly high. Therefore, it is also a challenge to know how to configure the parameters to maximize the energy efficiency while maintaining a high data rate. In this work, a complex evaluation experiment on the communication capability under a negative Signal to Noise Ratio is presented, and the specific details of the relationship between physical layer parameters and the packet reception performance of LoRa are clarified. Furthermore, we study the impact of the packet length on the packet reception performance of LoRa, and the experimental results show that when there is a large amount of data to be transmitted, it is better to choose long packets instead of short packets. Finally, considering the influence of physical layer parameters and the packet length on the packet reception performance of LoRa, the optimal parameter combination is explored, so as to propose a transmission scheme with a balanced reliability, delay, and energy consumption. This scheme is the first to consider the physical layer parameters and packet length together to study the communication transmission scheme, which reduces the communication time by 50% compared with the traditional transmission scheme and greatly reduces the energy consumption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available