4.7 Article

Liquid metal embrittlement of a dual-phase Al0.7CoCrFeNi high-entropy alloy exposed to oxygen-saturated lead-bismuth eutectic

Journal

SCRIPTA MATERIALIA
Volume 194, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2020.113652

Keywords

LBE; Liquid metal embrittlement; High-entropy alloys; Cracking; Phase boundary wetting

Funding

  1. National Natural Science Foundation of China [51801129, 51701170]
  2. Natural Science Foundation of Shenzhen University, China [85304-000 0 0302]

Ask authors/readers for more resources

This study reports a new liquid metal embrittlement (LME) system in which Al0.7CoCrFeNi high-entropy alloy is embrittled by lead-bismuth eutectic (LBE) at 350 and 500 degrees C. Different cracking modes are observed at these two temperatures, indicating a transition in the mechanism of LME.
This paper reports a new liquid metal embrittlement (LME) system in which a dual-phase Al0.7CoCrFeNi (equimolar fraction) high-entropy alloy (HEA) is embrittled by lead-bismuth eutectic (LBE) at 350 and 500 degrees C. At 350 degrees C, (Ni, Al)-rich BCC phase is embrittled, leading to intragrain cracking within this phase, while the predominant cracking mode changes to BCC/FCC phase boundary decohesion at 500 degrees C. At both temperatures, cracks are rarely seen in the (Co, Cr, Fe)-rich FCC phase, indicating that this phase is immune to LME. Furthermore, the results suggest a transition from an adsorption-dominated LME mechanism at 350 degrees C to a phase boundary wetting-dominated LME mechanism at 500 degrees C. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Multidisciplinary

Precipitation behaviors and mechanical properties of a cold-rolled equiatomic FeCoCrNiMn high entropy alloy after long-time annealing treatment at 500?C

Zhonglun Zhang, Ji Gu, Min Song

Summary: The thermodynamic stability of the FeCoCrNiMn high entropy alloy is questioned in recent investigations. In this study, a long-time annealing treatment at 500 degrees C was conducted on a cold-rolled FeCoCrNiMn alloy, and the results show the precipitation of three phases. The precipitation sequence starts with two phases (a Cr-rich phase and a NiMn-rich phase) at annealing time ranging from 240 to 720 h, followed by a third FeCo-rich phase at a longer annealing period of 960 h. The formation of precipitation significantly affects the mechanical properties of the alloy.

MATERIALS LETTERS (2023)

Article Materials Science, Multidisciplinary

Effect of texture on damping behaviour in ZK60 magnesium alloy

Xiongpeng Zhou, Hongge Yan, Jihua Chen, Weijun Xia, Huaming Zhu, Bin Su, Min Song

Summary: The effect of texture on the damping capacity of ZK60 magnesium alloy was investigated through compression experiments. It was found that both the dislocation networks, twins, and the basal texture intensity affect the damping capacity. This research provides a direction for the study of high-strength and high-damping magnesium alloys.

MATERIALS SCIENCE AND TECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Stacking fault formation in perovskite Ti3AlC carbides in a TiAl based alloy during creep at 800°C

Li Wang, Xiaopeng Liang, Bin Liu, Michael Oehring, Jonathan Paul, Jie Liu, Min Song, Florian Pyczak, Yong Liu

Summary: The interaction between dislocations and perovskite Ti3AlC precipitates in a titanium alloy was investigated. It was found that the Ti3AlC carbides can be sheared by dislocations, leading to the formation of stacking faults and crossed stacking fault configurations. These stacking faults are induced by the shear of Shockley partial dislocations and further extended along specific crystal planes.

SCRIPTA MATERIALIA (2023)

Article Engineering, Mechanical

Enhanced strength-ductility synergy of medium-entropy alloys via multiple level gradient structures

Xu Zhang, Yang Gui, Minjie Lai, Xiaochong Lu, Ji Gu, Feng Wang, Tao Yang, Zhangwei Wang, Min Song

Summary: The microstructures, mechanical properties, and deformation substructures of gradient Mo0.3NiCoCr medium-entropy alloys with very coarse grain size created by pre-torsion have been investigated. The strength of these alloys increases with the increase of torsion angle, while the tensile elongation remains the same, suggesting the enhanced strength-ductility synergy. The combination of experimental characterization and theoretical modeling enables to clarify the underlying strengthening and strain hardening mechanisms, providing guidance for optimizing the mechanical performance of structural materials via tuning the design of gradient structure.

INTERNATIONAL JOURNAL OF PLASTICITY (2023)

Article Materials Science, Multidisciplinary

Microstructure evolution, martensite transformation and mechanical properties of heat treated Co-Cr-Mo-W alloys by selective laser melting

Zonglian Huang, Bo Wang, Fei Liu, Min Song, Song Ni, Shaojun Liu

Summary: The influence of laser energy density and heat treatment on the microstructure and properties of Co-Cr-Mo-W alloys fabricated by selective laser melting (SLM) was investigated. The SLM-ed Co-Cr-Mo-W alloys displayed high strength and good ductility when the laser power, scanning speed, and scanning space were set as 160 W, 400 mm/s, and 0.07 mm, respectively. The heat treated alloys showed finely distributed precipitates ranging from nano-to macro-scale in Co-Cr alloys grains and/or along the grain boundaries. By tailoring the microstructure and morphology of SLM-ed alloys during heat treatment, Co-Cr-Mo-W alloys with an excellent combination of strength and ductility can be achieved. The tensile strength, yield strength, and elongation were 1221.38 +/- 10 MPa, 778.81 +/- 12 MPa, and 17.2 +/- 0.67%, respectively.

INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS (2023)

Article Chemistry, Physical

The effects of strain rate and strain on the deformation-induced grain refinement process and hardness evolution of a polycrystalline cobalt

Weijing Liu, Xinglong An, Wenting Jiang, Song Ni, Min Song

Summary: In this study, the effects of strain rate and strain on the microstructure and hardness of polycrystalline cobalt were investigated. It was found that high strain rate promoted the activation of various types of twinning and incomplete dynamic recrystallization during high-speed impact. Quasi-static compression mainly resulted in dislocation slip and the activation of specific twins. The high-speed compressed samples exhibited higher hardness values due to the higher density of twins produced during high-speed compression.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Physical

Unveiling different oxide scales in a compositionally complex polycrystalline CoNi-base superalloy

Longjun Li, Li Wang, Zhida Liang, Junyang He, Min Song

Summary: The formation of various types of oxide scales on the surface and along the grain boundaries of a complex CoNi-based superalloy was investigated at 900 degrees C. A complex multilayered oxide scale was formed under steady-state conditions (oxidation time up to 24 hours). After the breakdown of the steady-state oxide scale (oxidation for 48 hours), different types of oxide scales occurred. It was also observed that oxidation gradually extended into the specimen interior along the grain boundaries, caused by selective oxidation of elements due to differences in equilibrium oxygen partial pressures. Local microstructure and oxygen concentration were found to significantly influence the formation and configuration of the oxide scales in the investigated alloy.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Letter Materials Science, Multidisciplinary

Enhancing {101 over line 2} twin boundary migration capability in Ti-Al solid solution alloys with increasing Al content

Hao Zhang, Bingqiang Wei, Xiaoqin Ou, Song Ni, Xiaozhou Liao, Min Song

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Positioning of interstitial carbon atoms in the deformed Fe-C system

Yang Yang, Xiaoqin Ou, Hao Zhang, Min Song

Summary: Carbon plays a crucial role in enhancing the mechanical properties of steels as a principal alloying element. This study investigates the interstitial sites for carbon atoms during deformation-induced phase transformations in Fe-C alloys through molecular dynamics simulations, providing insights into the microstructural evolution at the atomic scale. The distribution and arrangement of carbon atoms in the Fe lattice affect the formation of stacking faults and the pinning effects on dislocation movement.

MATERIALS TODAY COMMUNICATIONS (2023)

Article Chemistry, Physical

Enhancing strength and ductility of low RE content Mg-Gd-Y-Zr alloy via a novel thermomechanical treatment based on multi-directional forging

Yifu Deng, Hongge Yan, Qiang Li, Jihua Chen, Weijun Xia, Bin Su, Mouxin Wu, Yangbo Yu, Min Song

Summary: A novel thermomechanical treatment based on multi-directional forging is developed to improve the strength and ductility of a low RE content Mg-6.5Gd-1.2Y-0.49Zr alloy. The bimodal grain structure, along with the fine grain size of 0.8 μm and the coarse grain size of 11.6 μm, is prepared after a 4-pass-MDF process, which contributes to the high strength and good ductility of the alloy. The enhanced strength is attributed to the combined effect of aging precipitation of beta' phase and grain refinement, while the good ductility is achieved through the coordination of deformation in the bimodal structure and the activation of <c+a> slip.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Physical

Hot deformation behavior and microstructure evolution of TC17 alloy with lamellar and β treated starting microstructures during stepped strain rate compression

Yangbo Yu, Hongge Yan, Huaming Zhu, Jihua Chen, Weijun Xia, Taoyun Liang, Bin Su, Min Song

Summary: This study investigates the hot deformation behavior and microstructure evolution of TC17 alloy with lamellar and beta treated starting microstructures under stepped strain rate (20 s1 + 0.1 s1, 20 s1 + 1 s1, and 20 s1 + 10 s1) hot compression at 840 degrees C. The results show that the alloy with two microstructures exhibited similar flow curves, but the lamellar sample displayed more flow softening during the second compression stage with a strain rate of 10 s1. Adiabatic shearing bands with coarsened beta grains were formed in the compressed lamellar alloy, and a high dislocation density was observed at grain boundaries. The microstructure evolution after 60% compression was dominated by dynamic recovery, except for the lamellar alloy with a stepped strain rate of 1 s1, which underwent dramatic dynamic recrystallization. The precipitation of dot/lath-like << was achieved in both the 60% compressed alloys, and it was promoted by a higher stepped strain rate.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Physical

Microstructure and Mechanical Behavior of Quaternary Eutectic a plus ? plus Q plus Si Clusters in As-Cast Al-Mg-Si-Cu Alloys

Kai Li, Yan Yu, Qiang Lu, Yuanfei Li, Qiao Yan, Xinyue Lan, Liya Li, Baishan Chen, Min Song

Summary: This study reveals the chemical evolution and mechanical behavior of quaternary micro-scale Q constituent phase in the cast and homogenized states through micro-to-atomic scale studies. These findings provide a basis for the future design of alloys with better performance.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

Red and Near Infrared Emissive Bis-Tridentate Ir(III) Phosphors for Organic Light Emitting Diodes

Jie Yan, Min Song, Dong-Ying Zhou, Guowei Ni, Muhua Gu, Shek-Man Yiu, Xiuwen Zhou, Liang-Sheng Liao, Yun Chi

Summary: Efficient saturated red and near-infrared emissive bis-tridentate Ir(III) complexes have been synthesized for the development of organic light-emitting diodes (OLEDs). The resulting OLED devices demonstrate high external quantum efficiencies and emission peak wavelengths.

ADVANCED OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Evolutions of the microstructures and mechanical properties of TC18 titanium alloy processed by hot- rolling in b single-phase region

Changchang Liu, Ji Gu, Min Song

Summary: This study investigates the hot rolling treatment and water quenching process on a TC18 titanium alloy, revealing the formation of a new phase induced by stress and assisted by another phase. The existence of a new phase and diffuse streaks during hot working were also observed. The research confirms the presence of dynamic recrystallization (DRX), with recrystallization grains nucleating preferentially at high-energy areas such as grain boundaries and shear bands. The elongation decreases and tensile strength increases with increasing deformation.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Materials Science, Multidisciplinary

The effect of thermal history on the additively manufactured AlSi10Mg alloy response to ion irradiation

Ziv Ungarish, Michael Aizenshtein, Kevin Woller, Michael P. Short, Shmuel Hayun

Summary: This study compares the performance of AM AlSi10Mg with different microstructures under irradiation conditions. The results show that the samples subjected to heat treatment are more sensitive to irradiation, with a significant decrease in thermal diffusivity and increase in hardness.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Nanoscience & Nanotechnology

High dielectric temperature stability in the relaxor ferroelectric thin films via using a multilayer heterostructure

Jie Zhang, Xiaoyang Chen, MingJian Ding, Jiaqiang Chen, Ping Yu

Summary: This study enhances the compositional inhomogeneity of relaxor ferroelectric thin films to improve their dielectric temperature stability. The prepared films exhibit a relatively high dielectric constant and a very low variation ratio of dielectric constant over a wide temperature range.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

A rational proton compensation strategy of polyaniline-MnO2 hybrid structure for promoting dual ion storage of Zn-ion battery

Xiaoyu Chen, Ranran Zhang, Hao Zou, Ling Li, Qiancheng Zhu, Wenming Zhang

Summary: Polyaniline-manganese dioxide composites exhibit high conductivity, long discharge platform, and stable circulation, and the specific capacity is increased by providing additional H+ ions to participate in the reaction.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

High-resolution reconstruction-based investigation of multi-scale lamellar microstructures by coupled crystal plasticity and in-situ experiment

Xutao Huang, Yinping Chen, Jianjun Wang, Gang Lu, Wenxin Wang, Zan Yao, Sixin Zhao, Yujie Liu, Qian Li

Summary: This study aims to establish a novel approach to better understand and predict the behavior of materials with multi-scale lamellar microstructures. High-resolution reconstruction and collaborative characterization methods are used to accurately represent the microstructure. The mechanical properties of pearlite are investigated using crystal plasticity simulation and in-situ scanning electron microscopy tensile testing. The results validate the reliability of the novel strategy.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Planar fault transformation and unfaulting of interstitial dislocation loops in irradiated L12-Ni3Al

Cheng Chen, Fanchao Meng, Jun Song

Summary: This study systematically investigated the unfaulting mechanism of single-layer interstitial dislocation loops in irradiated L12-Ni3Al. The unfaulting routes of the loops were uncovered and the symmetry breaking during the unfaulting processes was further elucidated. A continuum model was formulated to analyze the energetics of the loops and predict the unfaulting threshold.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

On the co-nucleation of adjoining twin pairs at grain boundaries in hexagonal close-packed materials

Darshan Bamney, Laurent Capolungo

Summary: This work investigates the formation of adjoining twin pairs (ATPs) at grain boundaries (GBs) in hexagonal close-packed (hcp) metals, focusing on the co-nucleation (CN) of pairs of deformation twins. A continuum defect mechanics model is proposed to study the energetic feasibility of CN of ATPs resulting from GB dislocation dissociation. The model reveals that CN is preferred over the nucleation of a single twin variant for low misorientation angle GBs. Further analysis considering GB character and twin system alignment suggests that CN events could be responsible for ATP formation even at low m' values.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Sharp/diffuse antiferroelectric-ferroelectric phase transition regulated by atomic displacement ordering

Bing Han, Zhengqian Fu, Guoxiang Zhao, Xuefeng Chen, Genshui Wang, Fangfang Xu

Summary: This study investigates the behavior of electric-field induced antiferroelectric to ferroelectric (AFE-FE) phase transition and reveals the evolution of atomic displacement ordering as the cause for the transition behavior changing from sharp to diffuse. The novel semi-ordered configuration results from the competing interaction between long-range displacement modulation and compositional inhomogeneity, which leads to a diffuse AFE-FE transition while maintaining the switching field.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Size-effects in tensile fracture of rejuvenated and annealed metallic glass

Akib Jabed, Golden Kumar

Summary: This study demonstrates that cryogenic rejuvenation promotes homogeneous-like flow and increases ductility in metallic glass samples. Conversely, annealing has the opposite effect, resulting in a smoother fracture surface.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Heterogeneous distribution of isothermal ω precipitates prevents brittle fracture in aged β-Ti alloys

Xin Ji, Yan Chong, Satoshi Emura, Koichi Tsuchiya

Summary: A heterogeneous microstructure in Ti-15Mo-3Al alloy with heterogeneous distributions of Mo element and omega(iso) precipitates has achieved a four-fold increase in tensile ductility without a loss of tensile strength, by blocking the propagation of dislocation channels and preventing the formation of micro-cracks.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Machine-learning-aided density functional theory calculations of stacking fault energies in steel

Amit Samanta, Prasanna Balaprakash, Sylvie Aubry, Brian K. Lin

Summary: This study proposes a combined large-scale first principles approach with machine learning and materials informatics to quickly explore the chemistry-composition space of advanced high strength steels (AHSS). The distribution of aluminum and manganese atoms in iron is systematically explored using first principles calculations to investigate low stacking fault energy configurations. The use of an automated machine learning tool, DeepHyper, speeds up the computational process. The study provides insights into the distribution of aluminum and manganese atoms in systems containing stacking faults and their effects on the equilibrium distribution.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

A physics-constrained neural network for crystal plasticity modelling of FCC materials

Guowei Zhou, Yuanzhe Hu, Zizheng Cao, Myoung Gyu Lee, Dayong Li

Summary: In this work, a physics-constrained neural network is used to predict grain-level responses in FCC material by incorporating crystal plasticity theory. The key feature, shear strain rate of slip system, is identified based on crystal plasticity and incorporated into the loss function as physical constitutive equations. The introduction of physics constraints accelerates the convergence of the neural network model and improves prediction accuracy, especially for small-scale datasets. Transfer learning is performed to capture complex in-plane deformation of crystals with any initial orientations, including cyclic loading and arbitrary non-monotonic loading.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Lanthanum and tungsten co-doped ruthenium dioxide for fresh/sea-water alkaline hydrogen evolution reaction

Pengfei Yang, Qichang Li, Zhongying Wang, Yuxiao Gao, Wei Jin, Weiping Xiao, Lei Wang, Fusheng Liu, Zexing Wu

Summary: In this study, the HER performance of Ru-based catalysts is significantly improved through the dual-doping strategy. The obtained catalyst exhibits excellent performance in alkaline freshwater and alkaline seawater, and can be stably operated in a self-assembled overall water splitting electrolyzer.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Five-fold twin structures in sputter-deposited nickel alloy films

Ilias Bikmukhametov, Garritt J. Tucker, Gregory B. Thompson

Summary: Depositing a Ni-1at. % P film can facilitate the formation of multiple quintuple twin junctions, resulting in a five-fold twin structure and a pentagonal pyramid surface topology. The ability to control material structures offers opportunities for creating novel surface topologies, which can be used as arrays of field emitters or textured surfaces.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Explainable predictions of multi-component oxides enabled by attention-based neural networks

Zening Yang, Weiwei Sun, Zhengyu Sun, Mutian Zhang, Jin Yu, Yubin Wen

Summary: Multicomponent oxides (MCOs) have wide applications and accurately predicting their thermal expansion remains challenging. This study introduces an innovative attention-based deep learning model, which achieves improved performance by using two self-attention modules and demonstrates adaptability and interpretability.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Relating the combinatorial materials chip mapping to the glass-forming ability of bulk metallic glasses via diffraction peak width

Ze Liu, Cai Chen, Yuanxun Zhou, Lanting Zhang, Hong Wang

Summary: This study attempts to address the gap in cooling rates between thin film deposition and bulk metallic glass (BMG) casting by correlating the glass-forming range (GFR) determined from combinatorial materials chips (CMCs) with the glass-forming ability (GFA) of BMG. The results show that the full-width at half maximum (FWHM) of the first sharp diffraction peak (FSDP) is a good indicator of BMG GFA, and strong positive correlations between FWHM and the critical casting diameter (Dmax) are observed in various BMG systems. Furthermore, the Pearson correlation coefficients suggest possible similarities in the GFA natures of certain BMG pairs.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys

Mike Schneider, Jean-Philippe Couzinie, Amin Shalabi, Farhad Ibrahimkhel, Alberto Ferrari, Fritz Koermann, Guillaume Laplanche

Summary: This work aims to predict the microstructure of recrystallized medium and high-entropy alloys, particularly the density and thickness of annealing twins. Through experiments and simulations, a database is provided for twin boundary engineering in alloy development. The results also support existing theories and empirical relationships.

SCRIPTA MATERIALIA (2024)