4.8 Article

Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment

Journal

ENVIRONMENT INTERNATIONAL
Volume 88, Issue -, Pages 261-268

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2015.12.035

Keywords

Metal; Crayfish; Human health risk assessment; Uncertainty; Sensitivity

Funding

  1. National Natural Science Foundation of China [41273087]
  2. European Union
  3. SAGE-IGERT Fellowship (US National Science Foundation)

Ask authors/readers for more resources

Freshwater crayfish, the world's third largest crustacean species, has been reported to accumulate high levels of metals, while the current knowledge of potential risk associated with crayfish consumption lags behind that of finfish. We provide the first estimate of human health risk associated with crayfish (Procambarus clarkii) consumption in China, the world's largest producer and consumer of crayfish. We performed Monte Carlo Simulation on a standard risk model parameterized with local data on metal concentrations, bioaccessibility (phi), crayfish consumption rate, and consumer body mass. Bioaccessibility of metals in crayfish was found to be variable (68-95%) and metal-specific, suggesting a potential influence of metal bioaccessibility on effective metal intake. However, sensitivity analysis suggested risk of metals via crayfish consumption was predominantly explained by consumption rate (explaining >92% of total risk estimate variability), rather than metals concentration, bioaccessibility, or body mass. Mean metal concentrations (As, Cd, Cu, Ni, Pb, Se and Zn) in surveyed crayfish samples from 12 provinces in China conformed to national safety standards. However, risk calculation of phi-modified hazard quotient (HQ) and hazard index (HI) suggested that crayfish metals may pose a health risk for very high rate consumers, with a HI of over 24 for the highest rate consumers. Additionally, the phi-modified increased lifetime risk (ILTR) for carcinogenic effects due to the presence of As was above the acceptable level (10(-5)) for both the median (ILTR = 2.5 x 10(-5)) and 90th percentile (ILTR = 1.8 x 10(-4)), highlighting the relatively high risk of As in crayfish. Our results suggest a need to consider crayfish when assessing human dietary exposure to metals and associated health risks, especially for high crayfish-consuming populations, such as in China, USA and Sweden. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available