4.6 Article

An accurate Cluster chaotic optimization approach for digital medical image segmentation

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 33, Issue 16, Pages 10057-10091

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00521-021-05771-8

Keywords

Cluster chaotic optimization; Multi-level segmentation; Digital medical image; Minimum cross-entropy; Optimization process; Digital image segmentation

Ask authors/readers for more resources

Image segmentation is a crucial stage in digital image processing, with traditional methods performing poorly in complex scenarios. New approaches like the CCO algorithm show competitiveness but there is still room for improvement.
Image segmentation is a crucial stage in digital image processing used to obtain a more straightforward representation of images. Although classic bi-level segmentation is a relatively simple task, it only suffices to analyze rather simple images. More complex real-life scenarios such as medical imaging processing usually require multi-level segmentation to differentiate between the many regions of interest present in the original images. Traditional histogram-based approaches for multi-level segmentation tend to perform suboptimally, with the best performing being computationally expensive. This difficult compromise between performance and computational cost has led to the proposal of new approaches mixing a variety of optimization algorithms and statistical criteria. Despite the success of these new approaches, there is still room for improvement. It is under these circumstances that evolutionary algorithms like the cluster chaotic optimization (CCO) become relevant. The CCO takes advantage of the classification procedures of clustering techniques and the randomness of chaotic sequences for encouraging the search strategy. This paper proposes a novel method based on the CCO algorithm named minimum cross-entropy multi-level segmentation CCO (CEMS-CCO). The CEMS-CCO employs the cross-entropy as its fitness function and the CCO capabilities to deal with multimodal functions to search for the optimal solution to the multi-level segmentation problem. The CEMS-CCO shows competitive results for medical images multi-level segmentation regarding different quality metrics. Furthermore, its robustness and effectiveness are tested through the analysis of well-known benchmark images. Statistical analysis of the experimental results shows that the proposed CEMS-CCO technique outperforms state-of-the-art algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available